|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: morbius |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# morbius |
|
|
|
This model was trained from scratch on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.3311 |
|
- Bleu: 0.0490 |
|
- Precisions: [0.12658339197748064, 0.058000714881448825, 0.031020853918560506, 0.0276665140764477] |
|
- Brevity Penalty: 0.9781 |
|
- Length Ratio: 0.9783 |
|
- Translation Length: 45472 |
|
- Reference Length: 46479 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 12 |
|
- eval_batch_size: 12 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:--------------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:| |
|
| 2.6085 | 1.0 | 2630 | 2.3793 | 0.0398 | [0.11484440108136675, 0.05086452177719413, 0.022402389588222743, 0.019262093750807972] | 1.0 | 1.0585 | 49197 | 46479 | |
|
| 2.5537 | 2.0 | 5260 | 2.3538 | 0.0451 | [0.12435074854873206, 0.053338059789672695, 0.02736549165120594, 0.024163621427155037] | 0.9858 | 0.9859 | 45822 | 46479 | |
|
| 2.427 | 3.0 | 7890 | 2.3412 | 0.0478 | [0.12566410537870473, 0.05610922151130985, 0.029971974257836827, 0.026891236083357122] | 0.9798 | 0.9800 | 45550 | 46479 | |
|
| 2.3716 | 4.0 | 10520 | 2.3347 | 0.0487 | [0.12663965838169275, 0.0574505431946487, 0.030477866031926728, 0.027230821761893922] | 0.9823 | 0.9825 | 45665 | 46479 | |
|
| 2.3494 | 5.0 | 13150 | 2.3311 | 0.0490 | [0.12658339197748064, 0.058000714881448825, 0.031020853918560506, 0.0276665140764477] | 0.9781 | 0.9783 | 45472 | 46479 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.0 |
|
|