douglasadams11's picture
Model save
9dbabc3
---
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-large-ner-new
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-ner-new
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1106
- Precision: 0.9670
- Recall: 0.9604
- F1: 0.9637
- Accuracy: 0.9600
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1241 | 0.71 | 5000 | 0.1161 | 0.9618 | 0.9505 | 0.9561 | 0.9521 |
| 0.0993 | 1.42 | 10000 | 0.1132 | 0.9633 | 0.9568 | 0.9600 | 0.9562 |
| 0.0812 | 2.13 | 15000 | 0.1223 | 0.9662 | 0.9574 | 0.9618 | 0.9580 |
| 0.074 | 2.84 | 20000 | 0.1118 | 0.9661 | 0.9607 | 0.9634 | 0.9598 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0