metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-ner
results: []
distilbert-base-uncased-ner
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1419
- Precision: 0.9526
- Recall: 0.9431
- F1: 0.9479
- Accuracy: 0.9434
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2866 | 0.14 | 500 | 0.1970 | 0.9329 | 0.9213 | 0.9271 | 0.9212 |
0.198 | 0.28 | 1000 | 0.1851 | 0.9412 | 0.9218 | 0.9314 | 0.9253 |
0.1892 | 0.43 | 1500 | 0.1772 | 0.9431 | 0.9250 | 0.9340 | 0.9280 |
0.179 | 0.57 | 2000 | 0.1697 | 0.9440 | 0.9296 | 0.9367 | 0.9313 |
0.1719 | 0.71 | 2500 | 0.1618 | 0.9453 | 0.9330 | 0.9391 | 0.9339 |
0.1718 | 0.85 | 3000 | 0.1587 | 0.9443 | 0.9351 | 0.9397 | 0.9351 |
0.1664 | 0.99 | 3500 | 0.1569 | 0.9486 | 0.9340 | 0.9412 | 0.9361 |
0.1504 | 1.14 | 4000 | 0.1566 | 0.9480 | 0.9356 | 0.9417 | 0.9368 |
0.1479 | 1.28 | 4500 | 0.1539 | 0.9492 | 0.9369 | 0.9430 | 0.9381 |
0.1467 | 1.42 | 5000 | 0.1501 | 0.9499 | 0.9383 | 0.9441 | 0.9391 |
0.1478 | 1.56 | 5500 | 0.1489 | 0.9513 | 0.9368 | 0.9440 | 0.9390 |
0.147 | 1.7 | 6000 | 0.1457 | 0.9503 | 0.9402 | 0.9452 | 0.9407 |
0.1453 | 1.85 | 6500 | 0.1447 | 0.9510 | 0.9408 | 0.9459 | 0.9412 |
0.1384 | 1.99 | 7000 | 0.1442 | 0.9521 | 0.9405 | 0.9463 | 0.9415 |
0.1325 | 2.13 | 7500 | 0.1446 | 0.9494 | 0.9441 | 0.9467 | 0.9425 |
0.13 | 2.27 | 8000 | 0.1467 | 0.9524 | 0.9403 | 0.9463 | 0.9416 |
0.1286 | 2.41 | 8500 | 0.1435 | 0.9501 | 0.9440 | 0.9470 | 0.9427 |
0.1311 | 2.56 | 9000 | 0.1446 | 0.9529 | 0.9417 | 0.9473 | 0.9427 |
0.1258 | 2.7 | 9500 | 0.1438 | 0.9528 | 0.9425 | 0.9476 | 0.9431 |
0.1257 | 2.84 | 10000 | 0.1437 | 0.9527 | 0.9431 | 0.9479 | 0.9434 |
0.1289 | 2.98 | 10500 | 0.1420 | 0.9526 | 0.9430 | 0.9478 | 0.9433 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0