distilbert_system_A / README.md
doomnova's picture
Update README.md
aed89f8
|
raw
history blame
1.78 kB
---
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert_system_A
results: []
datasets:
- Babelscape/multinerd
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_system_A
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0547
- Precision: 0.8996
- Recall: 0.9132
- F1: 0.9063
- Accuracy: 0.9850
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0278 | 1.0 | 8205 | 0.0434 | 0.8992 | 0.8977 | 0.8984 | 0.9843 |
| 0.0161 | 2.0 | 16410 | 0.0477 | 0.9067 | 0.9065 | 0.9066 | 0.9851 |
| 0.0097 | 3.0 | 24615 | 0.0547 | 0.8996 | 0.9132 | 0.9063 | 0.9850 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0