whisper-base-zh / README.md
dongim04's picture
End of training
ab9cdbf verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: whisper-base-zh
    results: []

whisper-base-zh

This model is a fine-tuned version of openai/whisper-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3426
  • Wer: 78.6221

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4992 0.2075 100 0.4841 93.0091
0.4325 0.4149 200 0.4223 82.7761
0.4028 0.6224 300 0.3979 81.6616
0.3866 0.8299 400 0.3846 79.8886
0.3322 1.0373 500 0.3731 80.3951
0.3108 1.2448 600 0.3672 79.2300
0.3139 1.4523 700 0.3601 79.1287
0.324 1.6598 800 0.3558 78.7741
0.2629 1.8672 900 0.3525 78.1155
0.2421 2.0747 1000 0.3521 78.5208
0.217 2.2822 1100 0.3495 78.3688
0.2071 2.4896 1200 0.3490 78.5714
0.2183 2.6971 1300 0.3452 78.6727
0.2158 2.9046 1400 0.3426 78.6221

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3