|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-base-german-cased-20000-ner |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-base-german-cased-20000-ner |
|
|
|
This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0368 |
|
- Precision: 0.8221 |
|
- Recall: 0.875 |
|
- F1: 0.8478 |
|
- Accuracy: 0.9920 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0.1 | 64 | 0.0427 | 0.7796 | 0.8714 | 0.8229 | 0.9893 | |
|
| No log | 0.19 | 128 | 0.0472 | 0.5471 | 0.85 | 0.6657 | 0.9831 | |
|
| No log | 0.29 | 192 | 0.0384 | 0.7897 | 0.8179 | 0.8035 | 0.9899 | |
|
| No log | 0.38 | 256 | 0.0488 | 0.4970 | 0.8786 | 0.6348 | 0.9793 | |
|
| No log | 0.48 | 320 | 0.0412 | 0.7548 | 0.8464 | 0.7980 | 0.9895 | |
|
| No log | 0.58 | 384 | 0.0437 | 0.8373 | 0.8821 | 0.8591 | 0.9914 | |
|
| No log | 0.67 | 448 | 0.0399 | 0.7727 | 0.85 | 0.8095 | 0.9899 | |
|
| 0.0914 | 0.77 | 512 | 0.0394 | 0.7859 | 0.8786 | 0.8297 | 0.9899 | |
|
| 0.0914 | 0.86 | 576 | 0.0368 | 0.8221 | 0.875 | 0.8478 | 0.9920 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.9.0+cu111 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|