domischwimmbeck's picture
update model card README.md
d78a491
|
raw
history blame
2.26 kB
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-german-cased-20000-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-german-cased-20000-ner
This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0368
- Precision: 0.8221
- Recall: 0.875
- F1: 0.8478
- Accuracy: 0.9920
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 0.1 | 64 | 0.0427 | 0.7796 | 0.8714 | 0.8229 | 0.9893 |
| No log | 0.19 | 128 | 0.0472 | 0.5471 | 0.85 | 0.6657 | 0.9831 |
| No log | 0.29 | 192 | 0.0384 | 0.7897 | 0.8179 | 0.8035 | 0.9899 |
| No log | 0.38 | 256 | 0.0488 | 0.4970 | 0.8786 | 0.6348 | 0.9793 |
| No log | 0.48 | 320 | 0.0412 | 0.7548 | 0.8464 | 0.7980 | 0.9895 |
| No log | 0.58 | 384 | 0.0437 | 0.8373 | 0.8821 | 0.8591 | 0.9914 |
| No log | 0.67 | 448 | 0.0399 | 0.7727 | 0.85 | 0.8095 | 0.9899 |
| 0.0914 | 0.77 | 512 | 0.0394 | 0.7859 | 0.8786 | 0.8297 | 0.9899 |
| 0.0914 | 0.86 | 576 | 0.0368 | 0.8221 | 0.875 | 0.8478 | 0.9920 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.9.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1