metadata
license: mit
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-base-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9529566113766282
- name: Recall
type: recall
value: 0.9604268983755194
- name: F1
type: f1
value: 0.9566771720212616
- name: Accuracy
type: accuracy
value: 0.988938664048357
roberta-base-finetuned-ner
This model is a fine-tuned version of roberta-base on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0492
- Precision: 0.9530
- Recall: 0.9604
- F1: 0.9567
- Accuracy: 0.9889
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2031 | 1.0 | 878 | 0.0560 | 0.9381 | 0.9445 | 0.9413 | 0.9858 |
0.0446 | 2.0 | 1756 | 0.0480 | 0.9510 | 0.9578 | 0.9544 | 0.9887 |
0.0263 | 3.0 | 2634 | 0.0492 | 0.9530 | 0.9604 | 0.9567 | 0.9889 |
Framework versions
- Transformers 4.10.2
- Pytorch 1.9.0+cu102
- Datasets 1.12.0
- Tokenizers 0.10.3