language:
- multilingual
- ar
- bg
- de
- el
- en
- es
- fr
- hi
- it
- ja
- nl
- pl
- pt
- ru
- sw
- th
- tr
- ur
- vi
- zh
license: cc-by-4.0
tags:
- peft
- LoRA
- language-detection
- xlm-roberta-base
datasets:
- papluca/language-identification
metrics:
- accuracy
- f1
inference: false
base_model: xlm-roberta-base
model-index:
- name: xlm-roberta-base-lora-language-detection
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: papluca/language-identification
type: papluca/language-identification
metrics:
- type: accuracy
value: 99.43
name: Accuracy
- type: f1
value: 99.43
name: F1 Score
xlm-roberta-base-lora-language-detection
This model is a fine-tuned version of xlm-roberta-base on the Language Identification dataset. Using the PEFT-LoRA method to only fine-tune a small number of (extra) model parameters, thereby greatly decreasing the computational and storage costs.
Model description
This model is an XLM-RoBERTa transformer model with a classification head on top (i.e. a linear layer on top of the pooled output). For additional information please refer to the xlm-roberta-base model card or to the paper Unsupervised Cross-lingual Representation Learning at Scale by Conneau et al.
Intended uses & limitations
You can directly use this model as a language detector, i.e. for sequence classification tasks. Currently, it supports the following 20 languages:
arabic (ar), bulgarian (bg), german (de), modern greek (el), english (en), spanish (es), french (fr), hindi (hi), italian (it), japanese (ja), dutch (nl), polish (pl), portuguese (pt), russian (ru), swahili (sw), thai (th), turkish (tr), urdu (ur), vietnamese (vi), and chinese (zh)
Training and evaluation data
The model was fine-tuned on the Language Identification dataset, which consists of text sequences in 20 languages. The training set contains 70k samples, while the validation and test sets 10k each. The average accuracy on the test set is 99.4% (this matches the average macro/weighted F1-score being the test set perfectly balanced). A more detailed evaluation is provided by the following table.
Language | Precision | Recall | F1-score | support |
---|---|---|---|---|
ar | 1.000 | 0.998 | 0.999 | 500 |
bg | 0.992 | 1.000 | 0.996 | 500 |
de | 1.000 | 1.000 | 1.000 | 500 |
el | 1.000 | 1.000 | 1.000 | 500 |
en | 0.992 | 0.992 | 0.992 | 500 |
es | 0.994 | 0.992 | 0.993 | 500 |
fr | 0.998 | 0.998 | 0.998 | 500 |
hi | 0.945 | 1.000 | 0.972 | 500 |
it | 1.000 | 0.984 | 0.992 | 500 |
ja | 1.000 | 1.000 | 1.000 | 500 |
nl | 0.996 | 0.992 | 0.994 | 500 |
pl | 0.992 | 0.988 | 0.990 | 500 |
pt | 0.988 | 0.986 | 0.987 | 500 |
ru | 0.998 | 0.996 | 0.997 | 500 |
sw | 0.992 | 0.994 | 0.993 | 500 |
th | 1.000 | 1.000 | 1.000 | 500 |
tr | 1.000 | 1.000 | 1.000 | 500 |
ur | 1.000 | 0.964 | 0.982 | 500 |
vi | 1.000 | 1.000 | 1.000 | 500 |
zh | 1.000 | 1.000 | 1.000 | 500 |
Benchmarks
As a baseline to compare xlm-roberta-base-lora-language-detection
against, we have used the Python langid library. Since it comes pre-trained on 97 languages, we have used its .set_languages()
method to constrain the language set to our 20 languages. The average accuracy of langid on the test set is 98.5%. More details are provided by the table below.
Language | Precision | Recall | F1-score | support |
---|---|---|---|---|
ar | 0.990 | 0.970 | 0.980 | 500 |
bg | 0.998 | 0.964 | 0.981 | 500 |
de | 0.992 | 0.944 | 0.967 | 500 |
el | 1.000 | 0.998 | 0.999 | 500 |
en | 1.000 | 1.000 | 1.000 | 500 |
es | 1.000 | 0.968 | 0.984 | 500 |
fr | 0.996 | 1.000 | 0.998 | 500 |
hi | 0.949 | 0.976 | 0.963 | 500 |
it | 0.990 | 0.980 | 0.985 | 500 |
ja | 0.927 | 0.988 | 0.956 | 500 |
nl | 0.980 | 1.000 | 0.990 | 500 |
pl | 0.986 | 0.996 | 0.991 | 500 |
pt | 0.950 | 0.996 | 0.973 | 500 |
ru | 0.996 | 0.974 | 0.985 | 500 |
sw | 1.000 | 1.000 | 1.000 | 500 |
th | 1.000 | 0.996 | 0.998 | 500 |
tr | 0.990 | 0.968 | 0.979 | 500 |
ur | 0.998 | 0.996 | 0.997 | 500 |
vi | 0.971 | 0.990 | 0.980 | 500 |
zh | 1.000 | 1.000 | 1.000 | 500 |
Using the model for inference
# pip install -q loralib transformers
# pip install -q git+https://github.com/huggingface/peft.git@main
import torch
from peft import PeftConfig, PeftModel
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
pipeline,
)
peft_model_id = "dominguesm/xlm-roberta-base-lora-language-detection"
# Load the Peft model config
peft_config = PeftConfig.from_pretrained(peft_model_id)
# Load the base model config
base_config = AutoConfig.from_pretrained(peft_config.base_model_name_or_path)
# Load the base model
base_model = AutoModelForSequenceClassification.from_pretrained(
peft_config.base_model_name_or_path, config=base_config
)
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(peft_config.base_model_name_or_path)
# Load the inference model
inference_model = PeftModel.from_pretrained(base_model, peft_model_id)
# Load the pipeline
pipe = pipeline("text-classification", model=inference_model, tokenizer=tokenizer)
def detect_lang(text: str) -> str:
# This code runs on CPU, so we use torch.cpu.amp.autocast to perform
# automatic mixed precision.
with torch.cpu.amp.autocast():
# or `with torch.cuda.amp.autocast():`
pred = pipe(text)
return pred
detect_lang(
"Cada qual sabe amar a seu modo; o modo, pouco importa; o essencial é que saiba amar."
)
# [{'label': 'pt', 'score': 0.9959434866905212}]
Training procedure
Fine-tuning was done via the Trainer
API. Here is the Jupyter notebook with the training code.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- num_epochs: 2
Training results
The validation results on the valid
split of the Language Identification dataset are summarised here below.
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.4403 | 1.0 | 1094 | 0.0591 | 0.9952 | 0.9952 |
0.0256 | 2.0 | 2188 | 0.0272 | 0.9955 | 0.9955 |
In short, it achieves the following results on the validation set:
- Loss: 0.0298
- Accuracy: 0.9946
- F1: 0.9946
Framework versions
- torch 1.13.1+cu116
- datasets 2.10.1
- sklearn 1.2.1
- transformers 4.27.0.dev0
- langid 1.1.6
- peft 0.3.0.dev0
Note
This study was fully based and inspired by the xlm-roberta-base-language-detection model, developed by Luca Papariello.