|
--- |
|
license: apache-2.0 |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- snli |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-small-finetuned-contradiction |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: snli |
|
type: snli |
|
args: plain_text |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 34.3503 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-finetuned-contradiction |
|
|
|
This model is a fine-tuned version of [domenicrosati/t5-small-finetuned-contradiction](https://huggingface.co/domenicrosati/t5-small-finetuned-contradiction) on the snli dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0662 |
|
- Rouge1: 34.3503 |
|
- Rouge2: 14.671 |
|
- Rougel: 32.5398 |
|
- Rougelsum: 32.5331 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 2.0071 | 1.0 | 2863 | 2.1018 | 34.4519 | 14.6277 | 32.6441 | 32.6415 | |
|
| 2.0704 | 2.0 | 5726 | 2.0897 | 34.4688 | 14.7508 | 32.6253 | 32.6227 | |
|
| 2.0738 | 3.0 | 8589 | 2.0808 | 34.4291 | 14.5548 | 32.6263 | 32.6384 | |
|
| 2.0788 | 4.0 | 11452 | 2.0744 | 34.6759 | 14.842 | 32.8169 | 32.823 | |
|
| 2.0781 | 5.0 | 14315 | 2.0714 | 34.4961 | 14.7307 | 32.6362 | 32.6378 | |
|
| 2.0687 | 6.0 | 17178 | 2.0674 | 34.6406 | 14.8359 | 32.8403 | 32.8423 | |
|
| 2.0627 | 7.0 | 20041 | 2.0671 | 34.526 | 14.6943 | 32.6919 | 32.694 | |
|
| 2.0585 | 8.0 | 22904 | 2.0662 | 34.4196 | 14.7107 | 32.607 | 32.6035 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.11.0+cu102 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|