domci's picture
Update README.md
da28189 verified
---
license: mit
datasets:
- unicamp-dl/mmarco
language:
- de
---
# ColBERTv2-mmarco-de-0.1
This is a German ColBERT implementation based on [colbert-ir/colbertv2.0](https://huggingface.co/colbert-ir/colbertv2.0)
- Base Model: [dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased)
- Training Data: [unicamp-dl/mmarco](https://huggingface.co/unicamp-dl/mMiniLM-L6-v2-mmarco-v2) --> 10Mio random sample
- Framework used for training [RAGatouille](https://github.com/bclavie/RAGatouille) Thanks a ton [@bclavie](https://huggingface.co/bclavie) !
As I'm limited on GPU Training did not go through all the way. "Only" 10 checkpoints were trained.
# Code
My code is probably a mess, but YOLO!
## data prep
```python
from datasets import load_dataset
from ragatouille import RAGTrainer
from tqdm import tqdm
import pickle
from concurrent.futures import ThreadPoolExecutor
from tqdm.notebook import tqdm
import concurrent
SAMPLE_SIZE = -1
def int_to_string(number):
if number < 0:
return "full"
elif number < 1000:
return str(number)
elif number < 1000000:
return f"{number // 1000}K"
elif number >= 1000000:
return f"{number // 1000000}M"
def process_chunk(chunk):
return [list(item) for item in zip(chunk["query"], chunk["positive"], chunk["negative"])]
def chunked_iterable(iterable, chunk_size):
"""Yield successive chunks from iterable."""
for i in range(0, len(iterable), chunk_size):
yield iterable[i:i + chunk_size]
def process_dataset_concurrently(dataset, chunksize=1000):
with ThreadPoolExecutor() as executor:
# Wrap the dataset with tqdm for real-time updates
wrapped_dataset = tqdm(chunked_iterable(dataset, chunksize), total=(len(dataset) + chunksize - 1) // chunksize)
# Submit each chunk to the executor
futures = [executor.submit(process_chunk, chunk) for chunk in wrapped_dataset]
results = []
for future in concurrent.futures.as_completed(futures):
results.extend(future.result())
return results
dataset = load_dataset('unicamp-dl/mmarco', 'german', trust_remote_code=True)
# Shuffle the dataset and seed for reproducibility if needed
shuffled_dataset = dataset['train'].shuffle(seed=42)
if SAMPLE_SIZE > 0:
sampled_dataset = shuffled_dataset.select(range(SAMPLE_SIZE))
else:
sampled_dataset = shuffled_dataset
triplets = process_dataset_concurrently(sampled_dataset, chunksize=10000)
trainer = RAGTrainer(model_name=f"ColBERT-mmacro-de-{int_to_string(SAMPLE_SIZE)}", pretrained_model_name="dbmdz/bert-base-german-cased", language_code="de",)
trainer.prepare_training_data(raw_data=triplets, mine_hard_negatives=False)
```
## Training
```python
from datasets import load_dataset
import os
from ragatouille import RAGTrainer
from tqdm import tqdm
import pickle
from concurrent.futures import ThreadPoolExecutor
from tqdm.notebook import tqdm
import concurrent
from pathlib import Path
def int_to_string(number):
if number < 1000:
return str(number)
elif number < 1000000:
return f"{number // 1000}K"
elif number >= 1000000:
return f"{number // 1000000}M"
SAMPLE_SIZE = 1000000
trainer = RAGTrainer(model_name=f"ColBERT-mmacro-de-{int_to_string(SAMPLE_SIZE)}", pretrained_model_name="dbmdz/bert-base-german-cased", language_code="de",)
trainer.data_dir = Path("/kaggle/input/mmarco-de-10m")
trainer.train(batch_size=32,
nbits=4, # How many bits will the trained model use when compressing indexes
maxsteps=500000, # Maximum steps hard stop
use_ib_negatives=True, # Use in-batch negative to calculate loss
dim=128, # How many dimensions per embedding. 128 is the default and works well.
learning_rate=5e-6, # Learning rate, small values ([3e-6,3e-5] work best if the base model is BERT-like, 5e-6 is often the sweet spot)
doc_maxlen=256, # Maximum document length. Because of how ColBERT works, smaller chunks (128-256) work very well.
use_relu=False, # Disable ReLU -- doesn't improve performance
warmup_steps="auto", # Defaults to 10%
)
```