You are viewing v0.11.2 version.
A newer version
v0.13.0 is available.
TRL - Transformer Reinforcement Learning
TRL is a full stack library where we provide a set of tools to train transformer language models with Reinforcement Learning, from the Supervised Fine-tuning step (SFT), Reward Modeling step (RM) to the Proximal Policy Optimization (PPO) step. The library is integrated with 🤗 transformers.
Check the appropriate sections of the documentation depending on your needs:
API documentation
- Model Classes: A brief overview of what each public model class does.
SFTTrainer
: Supervise Fine-tune your model easily withSFTTrainer
RewardTrainer
: Train easily your reward model usingRewardTrainer
.PPOTrainer
: Further fine-tune the supervised fine-tuned model using PPO algorithm- Best-of-N Sampling: Use best of n sampling as an alternative way to sample predictions from your active model
DPOTrainer
: Direct Preference Optimization training usingDPOTrainer
.TextEnvironment
: Text environment to train your model using tools with RL.
Examples
- Sentiment Tuning: Fine tune your model to generate positive movie contents
- Training with PEFT: Memory efficient RLHF training using adapters with PEFT
- Detoxifying LLMs: Detoxify your language model through RLHF
- StackLlama: End-to-end RLHF training of a Llama model on Stack exchange dataset
- Learning with Tools: Walkthrough of using
TextEnvironments
- Multi-Adapter Training: Use a single base model and multiple adapters for memory efficient end-to-end training
Blog posts
Preference Optimization for Vision Language Models with TRL
Illustrating Reinforcement Learning from Human Feedback
Fine-tuning 20B LLMs with RLHF on a 24GB consumer GPU
StackLLaMA: A hands-on guide to train LLaMA with RLHF
Fine-tune Llama 2 with DPO
Finetune Stable Diffusion Models with DDPO via TRL