TRL documentation

Training customization

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v0.13.0).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Training customization

TRL is designed with modularity in mind so that users to be able to efficiently customize the training loop for their needs. Below are some examples on how you can apply and test different techniques. Note: Although these examples use the DPOTrainer, the customization applies to most (if not all) trainers.

Train on multiple GPUs / nodes

The trainers in TRL use 🤗 Accelerate to enable distributed training across multiple GPUs or nodes. To do so, first create an 🤗 Accelerate config file by running

accelerate config

and answering the questions according to your multi-gpu / multi-node setup. You can then launch distributed training by running:

accelerate launch your_script.py

We also provide config files in the examples folder that can be used as templates. To use these templates, simply pass the path to the config file when launching a job, e.g.:

accelerate launch --config_file=examples/accelerate_configs/multi_gpu.yaml --num_processes {NUM_GPUS} path_to_script.py --all_arguments_of_the_script

Refer to the examples page for more details.

Distributed training with DeepSpeed

All of the trainers in TRL can be run on multiple GPUs together with DeepSpeed ZeRO-{1,2,3} for efficient sharding of the optimizer states, gradients, and model weights. To do so, run:

accelerate launch --config_file=examples/accelerate_configs/deepspeed_zero{1,2,3}.yaml --num_processes {NUM_GPUS} path_to_your_script.py --all_arguments_of_the_script

Note that for ZeRO-3, a small tweak is needed to initialize your reward model on the correct device via the zero3_init_context_manager() context manager. In particular, this is needed to avoid DeepSpeed hanging after a fixed number of training steps. Here is a snippet of what is involved from the sentiment_tuning example:

ds_plugin = ppo_trainer.accelerator.state.deepspeed_plugin
if ds_plugin is not None and ds_plugin.is_zero3_init_enabled():
    with ds_plugin.zero3_init_context_manager(enable=False):
        sentiment_pipe = pipeline("sentiment-analysis", model="lvwerra/distilbert-imdb", device=device)
else:
    sentiment_pipe = pipeline("sentiment-analysis", model="lvwerra/distilbert-imdb", device=device)

Consult the 🤗 Accelerate documentation for more information about the DeepSpeed plugin.

Use different optimizers and schedulers

By default, the DPOTrainer creates a torch.optim.AdamW optimizer. You can create and define a different optimizer and pass it to DPOTrainer as follows:

from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch import optim
from trl import DPOConfig, DPOTrainer

model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")

optimizer = optim.SGD(model.parameters(), lr=training_args.learning_rate)

trainer = DPOTrainer(
    model=model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=tokenizer,
    optimizers=(optimizer, None),
)
trainer.train()

Add a learning rate scheduler

You can also play with your training by adding learning rate schedulers.

from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch import optim
from trl import DPOConfig, DPOTrainer

model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")

optimizer = optim.AdamW(model.parameters(), lr=training_args.learning_rate)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)

trainer = DPOTrainer(
    model=model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=tokenizer,
    optimizers=(optimizer, lr_scheduler),
)
trainer.train()

Memory efficient fine-tuning by sharing layers

Another tool you can use for more memory efficient fine-tuning is to share layers between the reference model and the model you want to train.

from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import create_reference_model, DPOConfig, DPOTrainer

model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
ref_model = create_reference_model(model, num_shared_layers=6)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train[:1%]")
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")

trainer = DPOTrainer(
    model=model,
    ref_model=ref_model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=tokenizer,
)
trainer.train()

Pass 8-bit reference models

Since trl supports all keyword arguments when loading a model from transformers using from_pretrained, you can also leverage load_in_8bit from transformers for more memory efficient fine-tuning.

Read more about 8-bit model loading in transformers here.

from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from trl import DPOConfig, DPOTrainer

model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
ref_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct", quantization_config= quantization_config)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")

trainer = DPOTrainer(
    model=model,
    ref_model=ref_model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=tokenizer,
)
trainer.train()

Use the CUDA cache optimizer

When training large models, you should better handle the CUDA cache by iteratively clearing it. To do so, simply pass optimize_cuda_cache=True to DPOConfig:

training_args = DPOConfig(..., optimize_cuda_cache=True)
< > Update on GitHub