Transformers documentation

NLLB

Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

This model was released on 2022-07-11 and added to Hugging Face Transformers on 2022-07-18.

NLLB

PyTorch FlashAttention SDPA

Overview

NLLB: No Language Left Behind is a multilingual translation model. It’s trained on data using data mining techniques tailored for low-resource languages and supports over 200 languages. NLLB features a conditional compute architecture using a Sparsely Gated Mixture of Experts.

You can find all the original NLLB checkpoints under the AI at Meta organization.

This model was contributed by Lysandre. Click on the NLLB models in the right sidebar for more examples of how to apply NLLB to different translation tasks.

The example below demonstrates how to translate text with Pipeline or the AutoModel class.

Pipeline
AutoModel
transformers CLI
import torch
from transformers import pipeline

pipeline = pipeline(task="translation", model="facebook/nllb-200-distilled-600M", src_lang="eng_Latn", tgt_lang="fra_Latn", dtype=torch.float16, device=0)
pipeline("UN Chief says there is no military solution in Syria")

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.

The example below uses bitsandbytes to quantize the weights to 8-bits.

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, BitsAndBytesConfig

bnb_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-1.3B", quantization_config=bnb_config)
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-1.3B")

article = "UN Chief says there is no military solution in Syria"
inputs = tokenizer(article, return_tensors="pt").to(model.device)
translated_tokens = model.generate(
    **inputs, forced_bos_token_id=tokenizer.convert_tokens_to_ids("fra_Latn"), max_length=30,
)
print(tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0])

Use the AttentionMaskVisualizer to better understand what tokens the model can and cannot attend to.

from transformers.utils.attention_visualizer import AttentionMaskVisualizer

visualizer = AttentionMaskVisualizer("facebook/nllb-200-distilled-600M")
visualizer("UN Chief says there is no military solution in Syria")

Notes

  • The tokenizer was updated in April 2023 to prefix the source sequence with the source language rather than the target language. This prioritizes zero-shot performance at a minor cost to supervised performance.

    >>> from transformers import NllbTokenizer
    
    >>> tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
    >>> tokenizer("How was your day?").input_ids
    [256047, 13374, 1398, 4260, 4039, 248130, 2]

    To revert to the legacy behavior, use the code example below.

    >>> from transformers import NllbTokenizer
    
    >>> tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M", legacy_behaviour=True)
  • For non-English languages, specify the language’s BCP-47 code with the src_lang keyword as shown below.

  • See example below for a translation from Romanian to German.

    >>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
    
    >>> tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
    >>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
    
    >>> article = "UN Chief says there is no military solution in Syria"
    >>> inputs = tokenizer(article, return_tensors="pt")
    
    >>> translated_tokens = model.generate(
    ...     **inputs, forced_bos_token_id=tokenizer.convert_tokens_to_ids("fra_Latn"), max_length=30
    ... )
    >>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
    Le chef de l'ONU dit qu'il n'y a pas de solution militaire en Syrie

NllbTokenizer

class transformers.NllbTokenizer

< >

( bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' src_lang = None tgt_lang = None additional_special_tokens = None legacy_behaviour = False vocab = None merges = None vocab_file = None **kwargs )

Parameters

  • vocab_file (str, optional) — Path to the vocabulary file.
  • bos_token (str, optional, defaults to "<s>") — The beginning of sequence token that was used during pretraining.
  • eos_token (str, optional, defaults to "</s>") — The end of sequence token.
  • sep_token (str, optional, defaults to "</s>") — The separator token.
  • cls_token (str, optional, defaults to "<s>") — The classifier token.
  • unk_token (str, optional, defaults to "<unk>") — The unknown token.
  • pad_token (str, optional, defaults to "<pad>") — The token used for padding.
  • mask_token (str, optional, defaults to "<mask>") — The token used for masking values.
  • src_lang (str, optional) — The language to use as source language for translation.
  • tgt_lang (str, optional) — The language to use as target language for translation.
  • legacy_behaviour (bool, optional, defaults to False) — Whether to use legacy behaviour (suffix pattern) or new behaviour (prefix pattern).

Construct an NLLB tokenizer (backed by HuggingFace’s tokenizers library). Based on Unigram.

This tokenizer inherits from TokenizersBackend which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.

The tokenization method is <tokens> <eos> <language code> for source language documents, and `<language code>

<tokens> <eos>` for target language documents.

Examples:

>>> from transformers import NllbTokenizer

>>> tokenizer = NllbTokenizer.from_pretrained(
...     "facebook/nllb-200-distilled-600M", src_lang="eng_Latn", tgt_lang="fra_Latn"
... )
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie."
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt")

set_src_lang_special_tokens

< >

( src_lang )

Reset the special tokens to the source lang setting.

  • In legacy mode: No prefix and suffix=[eos, src_lang_code].
  • In default mode: Prefix=[src_lang_code], suffix = [eos]

set_tgt_lang_special_tokens

< >

( lang: str )

Reset the special tokens to the target lang setting.

  • In legacy mode: No prefix and suffix=[eos, tgt_lang_code].
  • In default mode: Prefix=[tgt_lang_code], suffix = [eos]

NllbTokenizerFast

class transformers.NllbTokenizer

< >

( bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' src_lang = None tgt_lang = None additional_special_tokens = None legacy_behaviour = False vocab = None merges = None vocab_file = None **kwargs )

Parameters

  • vocab_file (str, optional) — Path to the vocabulary file.
  • bos_token (str, optional, defaults to "<s>") — The beginning of sequence token that was used during pretraining.
  • eos_token (str, optional, defaults to "</s>") — The end of sequence token.
  • sep_token (str, optional, defaults to "</s>") — The separator token.
  • cls_token (str, optional, defaults to "<s>") — The classifier token.
  • unk_token (str, optional, defaults to "<unk>") — The unknown token.
  • pad_token (str, optional, defaults to "<pad>") — The token used for padding.
  • mask_token (str, optional, defaults to "<mask>") — The token used for masking values.
  • src_lang (str, optional) — The language to use as source language for translation.
  • tgt_lang (str, optional) — The language to use as target language for translation.
  • legacy_behaviour (bool, optional, defaults to False) — Whether to use legacy behaviour (suffix pattern) or new behaviour (prefix pattern).

Construct an NLLB tokenizer (backed by HuggingFace’s tokenizers library). Based on Unigram.

This tokenizer inherits from TokenizersBackend which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.

The tokenization method is <tokens> <eos> <language code> for source language documents, and `<language code>

<tokens> <eos>` for target language documents.

Examples:

>>> from transformers import NllbTokenizer

>>> tokenizer = NllbTokenizer.from_pretrained(
...     "facebook/nllb-200-distilled-600M", src_lang="eng_Latn", tgt_lang="fra_Latn"
... )
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie."
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt")

set_src_lang_special_tokens

< >

( src_lang )

Reset the special tokens to the source lang setting.

  • In legacy mode: No prefix and suffix=[eos, src_lang_code].
  • In default mode: Prefix=[src_lang_code], suffix = [eos]

set_tgt_lang_special_tokens

< >

( lang: str )

Reset the special tokens to the target lang setting.

  • In legacy mode: No prefix and suffix=[eos, tgt_lang_code].
  • In default mode: Prefix=[tgt_lang_code], suffix = [eos]
Update on GitHub