Chameleon
개요
Chameleon 모델은 META AI Chameleon 팀의 논문 Chameleon: Mixed-Modal Early-Fusion Foundation Models에서 제안되었습니다. Chameleon은 벡터 양자화를 사용하여 이미지를 토큰화함으로써 멀티모달 출력을 생성할 수 있는 비전-언어 모델입니다. 이 모델은 교차된 형식을 포함한 이미지와 텍스트를 입력으로 받으며, 텍스트 응답을 생성합니다. 이미지 생성 모듈은 아직 공개되지 않았습니다.
논문의 초록은 다음과 같습니다:
우리는 이미지와 텍스트를 임의의 순서로 이해하고 생성할 수 있는 early-fusion 토큰 기반의 혼합 모달(mixed-modal) 모델의 일종인 Chameleon을 소개합니다. 우리는 초기부터 안정적인 훈련 접근법, 정렬 방법, 그리고 early-fusion, 토큰 기반, 혼합 모달 설정에 맞춘 아키텍처 매개변수를 제시합니다. 이 모델들은 시각적 질문 응답, 이미지 캡션 생성, 텍스트 생성, 이미지 생성, 장문 혼합 모달 생성 등 포괄적인 작업 범위에서 평가되었습니다. Chameleon은 단일 모델에서 이미지 캡션 생성 작업에서의 최첨단 성능을 포함한 광범위하고 일반적으로 적용 가능한 능력을 보여주며, 텍스트 전용 작업에서 Llama-2를 능가하면서 Mixtral 8x7B와 Gemini-Pro와 같은 모델들 사이에서도 경쟁력을 갖추고 있습니다. 그리고 상당한 성능의 이미지 생성도 수행합니다. 또한 프롬프트나 출력에 이미지와 텍스트의 혼합 시퀀스가 포함된 새로운 장문 혼합 모달 생성 평가에서, 인간의 판단에 따르면 Gemini Pro와 GPT-4V를 포함한 훨씬 더 큰 모델의 성능과 동등하거나 이를 능가합니다. Chameleon은 완전한 멀티모달 문서의 통합 모델링에서 중요한 발전을 보여줍니다.
Chameleon은 이미지를 이산적인 토큰으로 변환하기 위해 벡터 양자화 모듈을 통합합니다. 이는 자기회귀 transformer를 사용한 이미지 생성을 가능하게 합니다. 원본 논문에서 가져왔습니다.이 모델은 joaogante와 RaushanTurganbay가 기여했습니다. 원본 코드는 여기에서 찾을 수 있습니다.
사용 팁
더 정확한 결과를 위해, 배치 생성 시
padding_side="left"
를 사용하는 것을 권장합니다. 생성하기 전에processor.tokenizer.padding_side = "left"
로 설정하십시오.Chameleon은 안전성 정렬을 위해 튜닝되었음을 유의하십시오. 모델이 응답을 거부하는 경우, 열린 질문보다는 더 구체적으로 질문을 해보세요.
Chameleon은 채팅 형식으로 생성하므로, 생성된 텍스트는 항상 “assistant’s turn”으로 표시됩니다. 프로세서를 호출할 때
return_for_text_completion=True
를 전달하여 텍스트 완성 생성을 활성화할 수 있습니다.
[!NOTE] Transformers에서의 Chameleon 구현은 이미지 임베딩을 병합할 위치를 나타내기 위해 특별한 이미지 토큰을 사용합니다. 특별한 이미지 토큰을 위해 새로운 토큰을 추가하지 않고 예약된 토큰 중 하나인
<reserved08707>
를 사용했습니다. 올바른 생성을 위해 프롬프트에서 이미지가 임베딩될 위치에<image>
를 추가해야 합니다.
사용 예제
단일 이미지 추론
Chameleon은 게이티드(gated) 모델이므로 Hugging Face Hub에 대한 액세스 권한이 있고 토큰으로 로그인했는지 확인하세요. 다음은 모델을 로드하고 반정밀도(torch.bfloat16
)로 추론하는 방법입니다:
from transformers import ChameleonProcessor, ChameleonForConditionalGeneration
import torch
from PIL import Image
import requests
processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")
model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", torch_dtype=torch.bfloat16, device_map="cuda")
# 이미지와 텍스트 프롬프트 준비
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
prompt = "이 이미지에서 무엇을 보나요?<image>"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device, dtype=torch.bfloat16)
# 프롬프트를 자기회귀적으로 완성
output = model.generate(**inputs, max_new_tokens=50)
print(processor.decode(output[0], skip_special_tokens=True))
다중 이미지 추론
Chameleon은 여러 이미지를 입력으로 받아들이며, 이미지들은 동일한 프롬프트에 속하거나 다른 프롬프트에 속할 수 있습니다(배치 추론에서). 다음은 그 방법입니다:
from transformers import ChameleonProcessor, ChameleonForConditionalGeneration
import torch
from PIL import Image
import requests
processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")
model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", torch_dtype=torch.bfloat16, device_map="cuda")
# 세 가지 다른 이미지 가져오기
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
image_stop = Image.open(requests.get(url, stream=True).raw)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image_cats = Image.open(requests.get(url, stream=True).raw)
url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
image_snowman = Image.open(requests.get(url, stream=True).raw)
# 배치된 프롬프트 준비: 첫 번째는 다중 이미지 프롬프트이고 두 번째는 단일 이미지 프롬프트입니다
prompts = [
"이 이미지들은 무엇이 공통점인가요?<image><image>",
"<image>이 이미지에 무엇이 나타나 있나요?"
]
# 이미지들을 텍스트 프롬프트에서 사용되어야 하는 순서대로 입력할 수 있습니다
# 각 "<image>" 토큰은 하나의 이미지를 사용하며, 다음 "<image>" 토큰은 다음 이미지를 사용합니다
inputs = processor(images=[image_stop, image_cats, image_snowman], text=prompts, padding=True, return_tensors="pt").to(device="cuda", dtype=torch.bfloat16)
# 생성
generate_ids = model.generate(**inputs, max_new_tokens=50)
processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
모델 최적화
Bitsandbytes를 사용한 양자화
모델은 8비트 또는 4비트로 로드할 수 있으며, 이는 원본 모델의 성능을 유지하면서 메모리 요구 사항을 크게 줄여줍니다. 먼저 bitsandbytes를 설치하고(pip install bitsandbytes
), 라이브러리가 지원하는 GPU/가속기를 사용 중인지 확인하십시오.
bitsandbytes는 CUDA 이외의 여러 백엔드를 지원하도록 리팩터링되고 있습니다. 현재 ROCm(AMD GPU) 및 Intel CPU 구현이 성숙 단계이며, Intel XPU는 진행 중이고 Apple Silicon 지원은 Q4/Q1에 예상됩니다. 설치 지침 및 최신 백엔드 업데이트는 이 링크를 방문하세요.
전체 공개 전에 버그를 식별하는 데 도움이 되는 피드백을 환영합니다! 자세한 내용과 피드백은 이 문서를 확인하세요.
위의 코드 스니펫을 다음과 같이 변경하면 됩니다:
from transformers import ChameleonForConditionalGeneration, BitsAndBytesConfig
# 모델 양자화 방식 지정
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", quantization_config=quantization_config, device_map="cuda")
Flash-Attention 2와 SDPA를 사용하여 생성 속도 향상
이 모델은 최적화를 위해 Flash-Attention 2와 PyTorch의 torch.nn.functional.scaled_dot_product_attention
를 모두 지원합니다. SDPA는 모델을 로드할 때 기본 옵션입니다. Flash Attention 2로 전환하려면 먼저 flash-attn을 설치해야 합니다. 해당 패키지 설치에 대해서는 원본 리포지토리를 참고하십시오. 위의 코드 스니펫을 다음과 같이 변경하면 됩니다:
from transformers import ChameleonForConditionalGeneration
model_id = "facebook/chameleon-7b"
model = ChameleonForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
attn_implementation="flash_attention_2"
).to(0)
ChameleonConfig
class transformers.ChameleonConfig
< source >( vocab_size = 65536 hidden_size = 4096 intermediate_size = 11008 num_hidden_layers = 32 num_attention_heads = 32 num_key_value_heads = 32 hidden_act = 'silu' max_position_embeddings = 4096 initializer_range = 0.02 rms_norm_eps = 1e-05 use_cache = True pad_token_id = None bos_token_id = 1 eos_token_id = 2 tie_word_embeddings = False rope_theta = 10000.0 rope_scaling = None attention_bias = False attention_dropout = 0.0 model_parallel_size = 1 swin_norm = False vq_config = None vocabulary_map = None mlp_bias = False **kwargs )
Parameters
- vocab_size (
int
, optional, defaults to 65536) — Vocabulary size of the chameleon model. Defines the number of different tokens that can be represented by theinputs_ids
passed when calling ChameleonModel; this includes text and image tokens. - hidden_size (
int
, optional, defaults to 4096) — Dimension of the hidden representations. - intermediate_size (
int
, optional, defaults to 11008) — Dimension of the MLP representations. - num_hidden_layers (
int
, optional, defaults to 32) — Number of hidden layers in the Transformer decoder. - num_attention_heads (
int
, optional, defaults to 32) — Number of attention heads for each attention layer in the Transformer decoder. - num_key_value_heads (
int
, optional, defaults to 32) — This is the number of key_value heads that should be used to implement Grouped Query Attention. Ifnum_key_value_heads=num_attention_heads
, the model will use Multi Head Attention (MHA), ifnum_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
num_attention_heads`. - hidden_act (
str
orfunction
, optional, defaults to"silu"
) — The non-linear activation function (function or string) in the decoder. - max_position_embeddings (
int
, optional, defaults to 4096) — The maximum sequence length that this model might ever be used with. Chameleon supports up to 4096 tokens. - initializer_range (
float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices. - rms_norm_eps (
float
, optional, defaults to 1e-05) — The epsilon used by the rms normalization layers. - use_cache (
bool
, optional, defaults toTrue
) — Whether or not the model should return the last key/values attentions (not used by all models). Only relevant ifconfig.is_decoder=True
. - pad_token_id (
int
, optional) — Padding token id. - bos_token_id (
int
, optional, defaults to 1) — Beginning of stream token id. - eos_token_id (
int
, optional, defaults to 2) — End of stream token id. - tie_word_embeddings (
bool
, optional, defaults toFalse
) — Whether to tie weight embeddings - rope_theta (
float
, optional, defaults to 10000.0) — The base period of the RoPE embeddings. - rope_scaling (
Dict
, optional) — Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is{"type": strategy name, "factor": scaling factor}
. When using this flag, don’t updatemax_position_embeddings
to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/Localchameleon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. - attention_bias (
bool
, defaults toFalse
, optional, defaults toFalse
) — Whether to use a bias in the query, key, value and output projection layers during self-attention. - attention_dropout (
float
, optional, defaults to 0.0) — The dropout ratio for the attention probabilities. - model_parallel_size (
int
, optional, defaults to 1) — Number of shards used when training the model. This will be used in qk layernorm because the original Chameleon inference doesn’t do reduction in those layers and each rank has its own biases. - swin_norm (
bool
, optional, defaults toFalse
) — Use Swin Transformer normalization. - vq_config (
dict
, optional) — ChameleonVQConfig instance containing the configuration for the VQ-VAE model. - vocabulary_map (
dict
, optional) — A dictionary containing the vocabulary map from the tokenizer. Used to obtain tokens from the image inputs. - mlp_bias (
bool
, optional, defaults toFalse
) — Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
This is the configuration class to store the configuration of a ChameleonModel. It is used to instantiate a chameleon model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the meta/chameleon-7B.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
>>> from transformers import ChameleonModel, ChameleonConfig
>>> # Initializing a chameleon chameleon-7b style configuration
>>> configuration = ChameleonConfig()
>>> # Initializing a model from the chameleon-7b style configuration
>>> model = ChameleonModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
ChameleonVQVAEConfig
class transformers.ChameleonVQVAEConfig
< source >( embed_dim: int = 256 num_embeddings: int = 8192 double_latent: bool = False latent_channels: int = 256 resolution: int = 512 in_channels: int = 3 base_channels: int = 128 channel_multiplier: List = [1, 1, 2, 2, 4] num_res_blocks: int = 2 attn_resolutions: List = None dropout: float = 0.0 attn_type: str = 'vanilla' initializer_range = 0.02 **kwargs )
Parameters
- embed_dim (
int
, optional, defaults to 256) — Dimensionality of each embedding vector. - num_embeddings (
int
, optional, defaults to 8192) — Number of codebook embeddings. - double_latent (
bool
, optional, defaults toFalse
) — Whether to use double z channels. - latent_channels (
int
, optional, defaults to 256) — Number of channels for the latent space. - resolution (
int
, optional, defaults to 512) — Resolution of the input images. - in_channels (
int
, optional, defaults to 3) — Number of input channels. - base_channels (
int
, optional, defaults to 128) — Base channel count. - channel_multiplier (
List[int]
, optional, defaults to[1, 1, 2, 2, 4]
) — Channel multipliers for each resolution. - num_res_blocks (
int
, optional, defaults to 2) — Number of residual blocks. - attn_resolutions (
List[int]
, optional) — Resolutions to apply attention. - dropout (
float
, optional, defaults to 0.0) — Dropout rate. - attn_type (
str
, optional, defaults to"vanilla"
) — Attention type used in VQ-GAN encoder. Can be “vanilla” or None. - initializer_range (
float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
This is the configuration class to store the configuration of a ChameleonVQModel
. It is used to instantiate a
ChameleonVQModel
according to the specified arguments, defining the model architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the
documentation from PretrainedConfig for more information. Instantiating a
configuration with the defaults will yield a similar configuration to the VQModel of the
meta/chameleon-7B.
ChameleonProcessor
class transformers.ChameleonProcessor
< source >( image_processor tokenizer image_seq_length: int = 1024 image_token: str = '<image>' )
Parameters
- image_processor (ChameleonImageProcessor) — The image processor is a required input.
- tokenizer (LlamaTokenizerFast) — The tokenizer is a required input.
- image_seq_length (
int
, optional, defaults to 1024) — Sequence length of one image embedding. - image_token (
str
, optional, defaults to"<image>"
) — The special token used to indicate image in the text.
Constructs a Chameleon processor which wraps a Chameleon image processor and a Chameleon tokenizer into a single processor.
ChameleonProcessor offers all the functionalities of ChameleonImageProcessor and LlamaTokenizerFast.
See the __call__()
and decode() for more information.
This method forwards all its arguments to LlamaTokenizerFast’s batch_decode(). Please refer to the docstring of this method for more information.
This method forwards all its arguments to LlamaTokenizerFast’s decode(). Please refer to the docstring of this method for more information.
ChameleonImageProcessor
class transformers.ChameleonImageProcessor
< source >( do_resize: bool = True size: Dict = None resample: Resampling = 1 do_center_crop: bool = True crop_size: Dict = None do_rescale: bool = True rescale_factor: Union = 0.0078 do_normalize: bool = True image_mean: Union = None image_std: Union = None do_convert_rgb: bool = True **kwargs )
Parameters
- do_resize (
bool
, optional, defaults toTrue
) — Whether to resize the image’s (height, width) dimensions to the specifiedsize
. Can be overridden bydo_resize
in thepreprocess
method. - size (
Dict[str, int]
optional, defaults to{"shortest_edge" -- 512}
): Size of the image after resizing. The shortest edge of the image is resized to size[“shortest_edge”], with the longest edge resized to keep the input aspect ratio. Can be overridden bysize
in thepreprocess
method. - resample (
PILImageResampling
, optional, defaults to 1) — Resampling filter to use if resizing the image. Can be overridden byresample
in thepreprocess
method. - do_center_crop (
bool
, optional, defaults toTrue
) — Whether to center crop the image to the specifiedcrop_size
. Can be overridden bydo_center_crop
in thepreprocess
method. - crop_size (
Dict[str, int]
optional, defaults to {“height” — 512, “width”: 512}): Size of the output image after applyingcenter_crop
. Can be overridden bycrop_size
in thepreprocess
method. - do_rescale (
bool
, optional, defaults toTrue
) — Whether to rescale the image by the specified scalerescale_factor
. Can be overridden bydo_rescale
in thepreprocess
method. - rescale_factor (
int
orfloat
, optional, defaults to 0.0078) — Scale factor to use if rescaling the image. Can be overridden byrescale_factor
in thepreprocess
method. - do_normalize (
bool
, optional, defaults toTrue
) — Whether to normalize the image. Can be overridden bydo_normalize
in thepreprocess
method. - image_mean (
float
orList[float]
, optional, defaults to[1.0, 1.0, 1.0]
) — Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by theimage_mean
parameter in thepreprocess
method. - image_std (
float
orList[float]
, optional, defaults to[1.0, 1.0, 1.0]
) — Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by theimage_std
parameter in thepreprocess
method. Can be overridden by theimage_std
parameter in thepreprocess
method. - do_convert_rgb (
bool
, optional, defaults toTrue
) — Whether to convert the image to RGB.
Constructs a Chameleon image processor.
preprocess
< source >( images: Union do_resize: bool = None size: Dict = None resample: Resampling = None do_center_crop: bool = None crop_size: int = None do_rescale: bool = None rescale_factor: float = None do_normalize: bool = None image_mean: Union = None image_std: Union = None do_convert_rgb: bool = None return_tensors: Union = None data_format: Optional = <ChannelDimension.FIRST: 'channels_first'> input_data_format: Union = None )
Parameters
- images (
ImageInput
) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, setdo_rescale=False
. - do_resize (
bool
, optional, defaults toself.do_resize
) — Whether to resize the image. - size (
Dict[str, int]
, optional, defaults toself.size
) — Size of the image after resizing. Shortest edge of the image is resized to size[“shortest_edge”], with the longest edge resized to keep the input aspect ratio. - resample (
int
, optional, defaults toself.resample
) — Resampling filter to use if resizing the image. This can be one of the enumPILImageResampling
. Only has an effect ifdo_resize
is set toTrue
. - do_center_crop (
bool
, optional, defaults toself.do_center_crop
) — Whether to center crop the image. - crop_size (
Dict[str, int]
, optional, defaults toself.crop_size
) — Size of the center crop. Only has an effect ifdo_center_crop
is set toTrue
. - do_rescale (
bool
, optional, defaults toself.do_rescale
) — Whether to rescale the image. - rescale_factor (
float
, optional, defaults toself.rescale_factor
) — Rescale factor to rescale the image by ifdo_rescale
is set toTrue
. - do_normalize (
bool
, optional, defaults toself.do_normalize
) — Whether to normalize the image. - image_mean (
float
orList[float]
, optional, defaults toself.image_mean
) — Image mean to use for normalization. Only has an effect ifdo_normalize
is set toTrue
. - image_std (
float
orList[float]
, optional, defaults toself.image_std
) — Image standard deviation to use for normalization. Only has an effect ifdo_normalize
is set toTrue
. - do_convert_rgb (
bool
, optional, defaults toself.do_convert_rgb
) — Whether to convert the image to RGB. - return_tensors (
str
orTensorType
, optional) — The type of tensors to return. Can be one of:- Unset: Return a list of
np.ndarray
. TensorType.TENSORFLOW
or'tf'
: Return a batch of typetf.Tensor
.TensorType.PYTORCH
or'pt'
: Return a batch of typetorch.Tensor
.TensorType.NUMPY
or'np'
: Return a batch of typenp.ndarray
.TensorType.JAX
or'jax'
: Return a batch of typejax.numpy.ndarray
.
- Unset: Return a list of
- data_format (
ChannelDimension
orstr
, optional, defaults toChannelDimension.FIRST
) — The channel dimension format for the output image. Can be one of:"channels_first"
orChannelDimension.FIRST
: image in (num_channels, height, width) format."channels_last"
orChannelDimension.LAST
: image in (height, width, num_channels) format.- Unset: Use the channel dimension format of the input image.
- input_data_format (
ChannelDimension
orstr
, optional) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:"channels_first"
orChannelDimension.FIRST
: image in (num_channels, height, width) format."channels_last"
orChannelDimension.LAST
: image in (height, width, num_channels) format."none"
orChannelDimension.NONE
: image in (height, width) format.
Preprocess an image or batch of images.
ChameleonVQVAE
class transformers.ChameleonVQVAE
< source >( config: ChameleonVQVAEConfig )
Parameters
- config (ChameleonVQVAEConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The VQ-VAE model used in Chameleon for encoding/decoding images into discrete tokens. This model follows the “Make-a-scene: Scene-based text-to-image generation with human priors” paper from Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
Define the computation performed at every call.
Should be overridden by all subclasses.
Although the recipe for forward pass needs to be defined within
this function, one should call the Module
instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.
ChameleonModel
class transformers.ChameleonModel
< source >( config: ChameleonConfig )
Parameters
- config (ChameleonConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights. config — ChameleonConfig
The bare chameleon Model outputting raw hidden-states without any specific head on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a ChameleonDecoderLayer
forward
< source >( input_ids: LongTensor = None pixel_values: FloatTensor = None attention_mask: Optional = None position_ids: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None cache_position: Optional = None ) → transformers.modeling_outputs.BaseModelOutputWithPast or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- pixel_values (
torch.FloatTensor
of shape `(batch_size, num_channels, image_size, image_size)) — The tensors corresponding to the input images. Pixel values can be obtained using AutoImageProcessor. See ChameleonImageProcessor.call() for details. - attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
If
past_key_values
is used, optionally only the lastinput_ids
have to be input (seepast_key_values
).If you want to change padding behavior, you should read
modeling_opt._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in the paper for more information on the default strategy.- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]
. - past_key_values (
Cache
, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_values
returned by the model at a previous stage of decoding, whenuse_cache=True
orconfig.use_cache=True
.Should always be a Cache instance and the model will output the same cache instance. If
past_key_values
are used, the user can optionally input only the lastinput_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of allinput_ids
of shape(batch_size, sequence_length)
. - inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - use_cache (
bool
, optional) — If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
). - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids
, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length.
Returns
transformers.modeling_outputs.BaseModelOutputWithPast or tuple(torch.FloatTensor)
A transformers.modeling_outputs.BaseModelOutputWithPast or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (ChameleonConfig) and inputs.
-
last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.If
past_key_values
is used only the last hidden-state of the sequences of shape(batch_size, 1, hidden_size)
is output. -
past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) — Tuple oftuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
) and optionally ifconfig.is_encoder_decoder=True
2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
config.is_encoder_decoder=True
in the cross-attention blocks) that can be used (seepast_key_values
input) to speed up sequential decoding. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The ChameleonModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, ChameleonModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("meta/chameleon-7b")
>>> model = ChameleonModel.from_pretrained("meta/chameleon-7b")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
ChameleonForConditionalGeneration
class transformers.ChameleonForConditionalGeneration
< source >( config )
Parameters
- config (ChameleonConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Chameleon Model with a head on top used for outputting logits for next token prediction. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: LongTensor = None pixel_values: FloatTensor = None attention_mask: Optional = None position_ids: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None cache_position: Optional = None ) → transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- pixel_values (
torch.FloatTensor
of shape `(batch_size, num_channels, image_size, image_size)) — The tensors corresponding to the input images. Pixel values can be obtained using AutoImageProcessor. See ChameleonImageProcessor.call() for details. - attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
If
past_key_values
is used, optionally only the lastinput_ids
have to be input (seepast_key_values
).If you want to change padding behavior, you should read
modeling_opt._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in the paper for more information on the default strategy.- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]
. - past_key_values (
Cache
, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_values
returned by the model at a previous stage of decoding, whenuse_cache=True
orconfig.use_cache=True
.Should always be a Cache instance and the model will output the same cache instance. If
past_key_values
are used, the user can optionally input only the lastinput_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of allinput_ids
of shape(batch_size, sequence_length)
. - inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - use_cache (
bool
, optional) — If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
). - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids
, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length.Args — labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional): Labels for computing the masked language modeling loss. Indices should either be in[0, ..., config.vocab_size]
or -100 (seeinput_ids
docstring). Tokens with indices set to-100
are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]
.
Returns
transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)
A transformers.modeling_outputs.CausalLMOutputWithPast or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (ChameleonConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) — Language modeling loss (for next-token prediction). -
logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) — Tuple oftuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
)Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The ChameleonForConditionalGeneration forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import ChameleonProcessor, ChameleonForConditionalGeneration
>>> import torch
>>> import requests
>>> from PIL import Image
>>> model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", torch_dtype=torch.bfloat16)
>>> processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")
>>> prompt = "I used to know a lot about constellations when I was younger, but as I grew older, I forgot most of what I knew. These are the only two constellations that I really remember now.<image><image>I would like for you to tell me about 3 more constellations and give me a little bit of history about the constellation."
>>> image = Image.open(requests.get("https://nineplanets.org/wp-content/uploads/2020/12/the-big-dipper-1.jpg", stream=True).raw)
>>> image_2 = Image.open(requests.get("https://www.kxan.com/wp-content/uploads/sites/40/2020/10/ORION.jpg", stream=True).raw)
>>> inputs = processor(images=[image, image_2], text=prompt, return_tensors="pt").to(model.device, torch.bfloat16)
>>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False)
>>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0]