You are viewing v4.45.1 version.
A newer version
v4.46.3 is available.
使用 🤗 Tokenizers 中的分词器
PreTrainedTokenizerFast 依赖于 🤗 Tokenizers 库。从 🤗 Tokenizers 库获得的分词器可以被轻松地加载到 🤗 Transformers 中。
在了解具体内容之前,让我们先用几行代码创建一个虚拟的分词器:
>>> from tokenizers import Tokenizer
>>> from tokenizers.models import BPE
>>> from tokenizers.trainers import BpeTrainer
>>> from tokenizers.pre_tokenizers import Whitespace
>>> tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
>>> trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
>>> tokenizer.pre_tokenizer = Whitespace()
>>> files = [...]
>>> tokenizer.train(files, trainer)
现在,我们拥有了一个针对我们定义的文件进行训练的分词器。我们可以在当前运行时中继续使用它,或者将其保存到一个 JSON 文件以供将来重复使用。
直接从分词器对象加载
让我们看看如何利用 🤗 Transformers 库中的这个分词器对象。PreTrainedTokenizerFast 类允许通过接受已实例化的 tokenizer 对象作为参数,进行轻松实例化:
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer)
现在可以使用这个对象,使用 🤗 Transformers 分词器共享的所有方法!前往分词器页面了解更多信息。
从 JSON 文件加载
为了从 JSON 文件中加载分词器,让我们先保存我们的分词器:
>>> tokenizer.save("tokenizer.json")
我们保存此文件的路径可以通过 tokenizer_file
参数传递给 PreTrainedTokenizerFast 初始化方法:
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json")
现在可以使用这个对象,使用 🤗 Transformers 分词器共享的所有方法!前往分词器页面了解更多信息。
< > Update on GitHub