Benchmarks
Hugging Faceのベンチマークツールは非推奨であり、Transformerモデルの速度とメモリの複雑さを測定するために外部のベンチマークライブラリを使用することをお勧めします。
🤗 Transformersモデルをベンチマークし、ベストプラクティス、すでに利用可能なベンチマークについて見てみましょう。
🤗 Transformersモデルをベンチマークする方法について詳しく説明したノートブックはこちらで利用できます。
How to benchmark 🤗 Transformers models
PyTorchBenchmark
クラスとTensorFlowBenchmark
クラスを使用すると、🤗 Transformersモデルを柔軟にベンチマークできます。
ベンチマーククラスを使用すると、ピークメモリ使用量 および 必要な時間 を 推論 および トレーニング の両方について測定できます。
ここでの 推論 は、単一のフォワードパスによって定義され、 トレーニング は単一のフォワードパスと バックワードパスによって定義されます。
ベンチマーククラスPyTorchBenchmark
とTensorFlowBenchmark
は、それぞれのベンチマーククラスに対する適切な設定を含む PyTorchBenchmarkArguments
および TensorFlowBenchmarkArguments
タイプのオブジェクトを必要とします。
PyTorchBenchmarkArguments
および TensorFlowBenchmarkArguments
はデータクラスであり、それぞれのベンチマーククラスに対するすべての関連する設定を含んでいます。
次の例では、タイプ bert-base-cased のBERTモデルをベンチマークする方法が示されています。
>>> from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
>>> args = PyTorchBenchmarkArguments(models=["google-bert/bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512])
>>> benchmark = PyTorchBenchmark(args)
>>> from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
>>> args = TensorFlowBenchmarkArguments(
... models=["google-bert/bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512]
... )
>>> benchmark = TensorFlowBenchmark(args)
ここでは、ベンチマーク引数のデータクラスに対して、models
、batch_sizes
およびsequence_lengths
の3つの引数が指定されています。引数models
は必須で、
モデルハブからのモデル識別子のリスト
を期待し
ます。batch_sizes
とsequence_lengths
の2つのリスト
引数は
モデルのベンチマーク対象となるinput_ids
のサイズを定義します。
ベンチマーク引数データクラスを介して設定できる他の多くのパラメータがあります。これらの詳細については、直接ファイル
src/transformers/benchmark/benchmark_args_utils.py
、
src/transformers/benchmark/benchmark_args.py
(PyTorch用)、およびsrc/transformers/benchmark/benchmark_args_tf.py
(Tensorflow用)
を参照するか、次のシェルコマンドをルートから実行すると、PyTorchとTensorflowのそれぞれに対して設定可能なすべてのパラメータの記述的なリストが表示されます。
python examples/pytorch/benchmarking/run_benchmark.py --help
インスタンス化されたベンチマークオブジェクトは、単に benchmark.run()
を呼び出すことで実行できます。
>>> results = benchmark.run()
>>> print(results)
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
google-bert/bert-base-uncased 8 8 0.006
google-bert/bert-base-uncased 8 32 0.006
google-bert/bert-base-uncased 8 128 0.018
google-bert/bert-base-uncased 8 512 0.088
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
google-bert/bert-base-uncased 8 8 1227
google-bert/bert-base-uncased 8 32 1281
google-bert/bert-base-uncased 8 128 1307
google-bert/bert-base-uncased 8 512 1539
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: PyTorch
- use_torchscript: False
- framework_version: 1.4.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 08:58:43.371351
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
python examples/tensorflow/benchmarking/run_benchmark_tf.py --help
インスタンス化されたベンチマークオブジェクトは、単に benchmark.run()
を呼び出すことで実行できます。
>>> results = benchmark.run()
>>> print(results)
>>> results = benchmark.run()
>>> print(results)
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
google-bert/bert-base-uncased 8 8 0.005
google-bert/bert-base-uncased 8 32 0.008
google-bert/bert-base-uncased 8 128 0.022
google-bert/bert-base-uncased 8 512 0.105
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
google-bert/bert-base-uncased 8 8 1330
google-bert/bert-base-uncased 8 32 1330
google-bert/bert-base-uncased 8 128 1330
google-bert/bert-base-uncased 8 512 1770
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: Tensorflow
- use_xla: False
- framework_version: 2.2.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 09:26:35.617317
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
デフォルトでは、推論時間 と 必要なメモリ がベンチマークされます。
上記の例の出力では、最初の2つのセクションが 推論時間 と 推論メモリ
に対応する結果を示しています。さらに、計算環境に関するすべての関連情報、
例えば GPU タイプ、システム、ライブラリのバージョンなどが、ENVIRONMENT INFORMATION の下に表示されます。この情報は、PyTorchBenchmarkArguments
および TensorFlowBenchmarkArguments
に引数 save_to_csv=True
を追加することで、オプションで .csv ファイルに保存することができます。この場合、各セクションは別々の .csv ファイルに保存されます。.csv
ファイルへのパスは、データクラスの引数を使用してオプションで定義できます。
モデル識別子、例えば google-bert/bert-base-uncased
を使用して事前学習済みモデルをベンチマークする代わりに、利用可能な任意のモデルクラスの任意の設定をベンチマークすることもできます。この場合、ベンチマーク引数と共に設定の list
を挿入する必要があります。
>>> from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments, BertConfig
>>> args = PyTorchBenchmarkArguments(
... models=["bert-base", "bert-384-hid", "bert-6-lay"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512]
... )
>>> config_base = BertConfig()
>>> config_384_hid = BertConfig(hidden_size=384)
>>> config_6_lay = BertConfig(num_hidden_layers=6)
>>> benchmark = PyTorchBenchmark(args, configs=[config_base, config_384_hid, config_6_lay])
>>> benchmark.run()
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
bert-base 8 128 0.006
bert-base 8 512 0.006
bert-base 8 128 0.018
bert-base 8 512 0.088
bert-384-hid 8 8 0.006
bert-384-hid 8 32 0.006
bert-384-hid 8 128 0.011
bert-384-hid 8 512 0.054
bert-6-lay 8 8 0.003
bert-6-lay 8 32 0.004
bert-6-lay 8 128 0.009
bert-6-lay 8 512 0.044
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
bert-base 8 8 1277
bert-base 8 32 1281
bert-base 8 128 1307
bert-base 8 512 1539
bert-384-hid 8 8 1005
bert-384-hid 8 32 1027
bert-384-hid 8 128 1035
bert-384-hid 8 512 1255
bert-6-lay 8 8 1097
bert-6-lay 8 32 1101
bert-6-lay 8 128 1127
bert-6-lay 8 512 1359
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: PyTorch
- use_torchscript: False
- framework_version: 1.4.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 09:35:25.143267
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
>>> from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments, BertConfig
>>> args = TensorFlowBenchmarkArguments(
... models=["bert-base", "bert-384-hid", "bert-6-lay"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512]
... )
>>> config_base = BertConfig()
>>> config_384_hid = BertConfig(hidden_size=384)
>>> config_6_lay = BertConfig(num_hidden_layers=6)
>>> benchmark = TensorFlowBenchmark(args, configs=[config_base, config_384_hid, config_6_lay])
>>> benchmark.run()
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
bert-base 8 8 0.005
bert-base 8 32 0.008
bert-base 8 128 0.022
bert-base 8 512 0.106
bert-384-hid 8 8 0.005
bert-384-hid 8 32 0.007
bert-384-hid 8 128 0.018
bert-384-hid 8 512 0.064
bert-6-lay 8 8 0.002
bert-6-lay 8 32 0.003
bert-6-lay 8 128 0.0011
bert-6-lay 8 512 0.074
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
bert-base 8 8 1330
bert-base 8 32 1330
bert-base 8 128 1330
bert-base 8 512 1770
bert-384-hid 8 8 1330
bert-384-hid 8 32 1330
bert-384-hid 8 128 1330
bert-384-hid 8 512 1540
bert-6-lay 8 8 1330
bert-6-lay 8 32 1330
bert-6-lay 8 128 1330
bert-6-lay 8 512 1540
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: Tensorflow
- use_xla: False
- framework_version: 2.2.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 09:38:15.487125
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
カスタマイズされたBertModelクラスの構成に対する推論時間と必要なメモリのベンチマーク
この機能は、モデルをトレーニングする際にどの構成を選択すべきかを決定する際に特に役立つことがあります。
Benchmark best practices
このセクションでは、モデルをベンチマークする際に注意すべきいくつかのベストプラクティスをリストアップしています。
- 現在、単一デバイスのベンチマークしかサポートされていません。GPUでベンチマークを実行する場合、コードを実行するデバイスをユーザーが指定することを推奨します。
これはシェルで
CUDA_VISIBLE_DEVICES
環境変数を設定することで行えます。例:export CUDA_VISIBLE_DEVICES=0
を実行してからコードを実行します。 no_multi_processing
オプションは、テストおよびデバッグ用にのみTrue
に設定すべきです。正確なメモリ計測を確保するために、各メモリベンチマークを別々のプロセスで実行することをお勧めします。これにより、no_multi_processing
がTrue
に設定されます。- モデルのベンチマーク結果を共有する際には、常に環境情報を記述するべきです。異なるGPUデバイス、ライブラリバージョンなどでベンチマーク結果が大きく異なる可能性があるため、ベンチマーク結果単体ではコミュニティにとってあまり有用ではありません。
Sharing your benchmark
以前、すべての利用可能なコアモデル(当時10モデル)に対して、多くの異なる設定で推論時間のベンチマークが行われました:PyTorchを使用し、TorchScriptの有無、TensorFlowを使用し、XLAの有無などです。これらのテストはすべてCPUで行われました(TensorFlow XLAを除く)。
このアプローチの詳細については、次のブログポストに詳しく説明されており、結果はこちらで利用できます。
新しいベンチマークツールを使用すると、コミュニティとベンチマーク結果を共有することがこれまで以上に簡単になります。
< > Update on GitHub