Optimize inference using torch.compile()
このガイドは、torch.compile()
を使用した推論速度の向上に関するベンチマークを提供することを目的としています。これは、🤗 Transformers のコンピュータビジョンモデル向けのものです。
Benefits of torch.compile
torch.compile()
の利点
モデルとGPUによっては、torch.compile()は推論時に最大30%の高速化を実現します。 torch.compile()
を使用するには、バージョン2.0以上のtorchをインストールするだけです。
モデルのコンパイルには時間がかかるため、毎回推論するのではなく、モデルを1度だけコンパイルする場合に役立ちます。
任意のコンピュータビジョンモデルをコンパイルするには、以下のようにモデルにtorch.compile()
を呼び出します:
from transformers import AutoModelForImageClassification
model = AutoModelForImageClassification.from_pretrained(MODEL_ID).to("cuda")
+ model = torch.compile(model)
compile()
は、コンパイルに関する異なるモードを備えており、基本的にはコンパイル時間と推論のオーバーヘッドが異なります。max-autotune
は reduce-overhead
よりも時間がかかりますが、推論速度が速くなります。デフォルトモードはコンパイルにおいては最速ですが、推論時間においては reduce-overhead
に比べて効率が良くありません。このガイドでは、デフォルトモードを使用しました。詳細については、こちら を参照してください。
torch
バージョン 2.0.1 で異なるコンピュータビジョンモデル、タスク、ハードウェアの種類、およびバッチサイズを使用して torch.compile
をベンチマークしました。
Benchmarking code
以下に、各タスクのベンチマークコードを示します。推論前にGPUをウォームアップし、毎回同じ画像を使用して300回の推論の平均時間を取得します。
Image Classification with ViT
from PIL import Image
import requests
import numpy as np
from transformers import AutoImageProcessor, AutoModelForImageClassification
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
model = AutoModelForImageClassification.from_pretrained("google/vit-base-patch16-224").to("cuda")
model = torch.compile(model)
processed_input = processor(image, return_tensors='pt').to(device="cuda")
with torch.no_grad():
_ = model(**processed_input)
Object Detection with DETR
from transformers import AutoImageProcessor, AutoModelForObjectDetection
processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = AutoModelForObjectDetection.from_pretrained("facebook/detr-resnet-50").to("cuda")
model = torch.compile(model)
texts = ["a photo of a cat", "a photo of a dog"]
inputs = processor(text=texts, images=image, return_tensors="pt").to("cuda")
with torch.no_grad():
_ = model(**inputs)
Image Segmentation with Segformer
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
processor = SegformerImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to("cuda")
model = torch.compile(model)
seg_inputs = processor(images=image, return_tensors="pt").to("cuda")
with torch.no_grad():
_ = model(**seg_inputs)
以下は、私たちがベンチマークを行ったモデルのリストです。
Image Classification
- google/vit-base-patch16-224
- microsoft/beit-base-patch16-224-pt22k-ft22k
- facebook/convnext-large-224
- microsoft/resnet-50
Image Segmentation
- nvidia/segformer-b0-finetuned-ade-512-512
- facebook/mask2former-swin-tiny-coco-panoptic
- facebook/maskformer-swin-base-ade
- google/deeplabv3_mobilenet_v2_1.0_513
Object Detection
以下は、torch.compile()
を使用した場合と使用しない場合の推論時間の可視化と、異なるハードウェアとバッチサイズの各モデルに対するパフォーマンス向上の割合です。
下記は、各モデルについてcompile()
を使用した場合と使用しなかった場合の推論時間(ミリ秒単位)です。なお、OwlViTは大きなバッチサイズでの使用時にメモリ不足(OOM)が発生することに注意してください。
A100 (batch size: 1)
Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|
Image Classification/ViT | 9.325 | 7.584 |
Image Segmentation/Segformer | 11.759 | 10.500 |
Object Detection/OwlViT | 24.978 | 18.420 |
Image Classification/BeiT | 11.282 | 8.448 |
Object Detection/DETR | 34.619 | 19.040 |
Image Classification/ConvNeXT | 10.410 | 10.208 |
Image Classification/ResNet | 6.531 | 4.124 |
Image Segmentation/Mask2former | 60.188 | 49.117 |
Image Segmentation/Maskformer | 75.764 | 59.487 |
Image Segmentation/MobileNet | 8.583 | 3.974 |
Object Detection/Resnet-101 | 36.276 | 18.197 |
Object Detection/Conditional-DETR | 31.219 | 17.993 |
A100 (batch size: 4)
Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|
Image Classification/ViT | 14.832 | 14.499 |
Image Segmentation/Segformer | 18.838 | 16.476 |
Image Classification/BeiT | 13.205 | 13.048 |
Object Detection/DETR | 48.657 | 32.418 |
Image Classification/ConvNeXT | 22.940 | 21.631 |
Image Classification/ResNet | 6.657 | 4.268 |
Image Segmentation/Mask2former | 74.277 | 61.781 |
Image Segmentation/Maskformer | 180.700 | 159.116 |
Image Segmentation/MobileNet | 14.174 | 8.515 |
Object Detection/Resnet-101 | 68.101 | 44.998 |
Object Detection/Conditional-DETR | 56.470 | 35.552 |
A100 (batch size: 16)
Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|
Image Classification/ViT | 40.944 | 40.010 |
Image Segmentation/Segformer | 37.005 | 31.144 |
Image Classification/BeiT | 41.854 | 41.048 |
Object Detection/DETR | 164.382 | 161.902 |
Image Classification/ConvNeXT | 82.258 | 75.561 |
Image Classification/ResNet | 7.018 | 5.024 |
Image Segmentation/Mask2former | 178.945 | 154.814 |
Image Segmentation/Maskformer | 638.570 | 579.826 |
Image Segmentation/MobileNet | 51.693 | 30.310 |
Object Detection/Resnet-101 | 232.887 | 155.021 |
Object Detection/Conditional-DETR | 180.491 | 124.032 |
V100 (batch size: 1)
Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|
Image Classification/ViT | 10.495 | 6.00 |
Image Segmentation/Segformer | 13.321 | 5.862 |
Object Detection/OwlViT | 25.769 | 22.395 |
Image Classification/BeiT | 11.347 | 7.234 |
Object Detection/DETR | 33.951 | 19.388 |
Image Classification/ConvNeXT | 11.623 | 10.412 |
Image Classification/ResNet | 6.484 | 3.820 |
Image Segmentation/Mask2former | 64.640 | 49.873 |
Image Segmentation/Maskformer | 95.532 | 72.207 |
Image Segmentation/MobileNet | 9.217 | 4.753 |
Object Detection/Resnet-101 | 52.818 | 28.367 |
Object Detection/Conditional-DETR | 39.512 | 20.816 |
V100 (batch size: 4)
Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|
Image Classification/ViT | 15.181 | 14.501 |
Image Segmentation/Segformer | 16.787 | 16.188 |
Image Classification/BeiT | 15.171 | 14.753 |
Object Detection/DETR | 88.529 | 64.195 |
Image Classification/ConvNeXT | 29.574 | 27.085 |
Image Classification/ResNet | 6.109 | 4.731 |
Image Segmentation/Mask2former | 90.402 | 76.926 |
Image Segmentation/Maskformer | 234.261 | 205.456 |
Image Segmentation/MobileNet | 24.623 | 14.816 |
Object Detection/Resnet-101 | 134.672 | 101.304 |
Object Detection/Conditional-DETR | 97.464 | 69.739 |
V100 (batch size: 16)
Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|
Image Classification/ViT | 52.209 | 51.633 |
Image Segmentation/Segformer | 61.013 | 55.499 |
Image Classification/BeiT | 53.938 | 53.581 |
Object Detection/DETR | OOM | OOM |
Image Classification/ConvNeXT | 109.682 | 100.771 |
Image Classification/ResNet | 14.857 | 12.089 |
Image Segmentation/Mask2former | 249.605 | 222.801 |
Image Segmentation/Maskformer | 831.142 | 743.645 |
Image Segmentation/MobileNet | 93.129 | 55.365 |
Object Detection/Resnet-101 | 482.425 | 361.843 |
Object Detection/Conditional-DETR | 344.661 | 255.298 |
T4 (batch size: 1)
Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|
Image Classification/ViT | 16.520 | 15.786 |
Image Segmentation/Segformer | 16.116 | 14.205 |
Object Detection/OwlViT | 53.634 | 51.105 |
Image Classification/BeiT | 16.464 | 15.710 |
Object Detection/DETR | 73.100 | 53.99 |
Image Classification/ConvNeXT | 32.932 | 30.845 |
Image Classification/ResNet | 6.031 | 4.321 |
Image Segmentation/Mask2former | 79.192 | 66.815 |
Image Segmentation/Maskformer | 200.026 | 188.268 |
Image Segmentation/MobileNet | 18.908 | 11.997 |
Object Detection/Resnet-101 | 106.622 | 82.566 |
Object Detection/Conditional-DETR | 77.594 | 56.984 |
T4 (batch size: 4)
Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|
Image Classification/ViT | 43.653 | 43.626 |
Image Segmentation/Segformer | 45.327 | 42.445 |
Image Classification/BeiT | 52.007 | 51.354 |
Object Detection/DETR | 277.850 | 268.003 |
Image Classification/ConvNeXT | 119.259 | 105.580 |
Image Classification/ResNet | 13.039 | 11.388 |
Image Segmentation/Mask2former | 201.540 | 184.670 |
Image Segmentation/Maskformer | 764.052 | 711.280 |
Image Segmentation/MobileNet | 74.289 | 48.677 |
Object Detection/Resnet-101 | 421.859 | 357.614 |
Object Detection/Conditional-DETR | 289.002 | 226.945 |
T4 (batch size: 16)
Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|
Image Classification/ViT | 163.914 | 160.907 |
Image Segmentation/Segformer | 192.412 | 163.620 |
Image Classification/BeiT | 188.978 | 187.976 |
Object Detection/DETR | OOM | OOM |
Image Classification/ConvNeXT | 422.886 | 388.078 |
Image Classification/ResNet | 44.114 | 37.604 |
Image Segmentation/Mask2former | 756.337 | 695.291 |
Image Segmentation/Maskformer | 2842.940 | 2656.88 |
Image Segmentation/MobileNet | 299.003 | 201.942 |
Object Detection/Resnet-101 | 1619.505 | 1262.758 |
Object Detection/Conditional-DETR | 1137.513 | 897.390 |
PyTorch Nightly
また、PyTorchのナイトリーバージョン(2.1.0dev)でのベンチマークを行い、コンパイルされていないモデルとコンパイル済みモデルの両方でレイテンシーの向上を観察しました。ホイールはこちらから入手できます。
A100
Task/Model | Batch Size | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|---|
Image Classification/BeiT | Unbatched | 12.462 | 6.954 |
Image Classification/BeiT | 4 | 14.109 | 12.851 |
Image Classification/BeiT | 16 | 42.179 | 42.147 |
Object Detection/DETR | Unbatched | 30.484 | 15.221 |
Object Detection/DETR | 4 | 46.816 | 30.942 |
Object Detection/DETR | 16 | 163.749 | 163.706 |
T4
Task/Model | Batch Size | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|---|
Image Classification/BeiT | Unbatched | 14.408 | 14.052 |
Image Classification/BeiT | 4 | 47.381 | 46.604 |
Image Classification/BeiT | 16 | 42.179 | 42.147 |
Object Detection/DETR | Unbatched | 68.382 | 53.481 |
Object Detection/DETR | 4 | 269.615 | 204.785 |
Object Detection/DETR | 16 | OOM | OOM |
V100
Task/Model | Batch Size | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|---|
Image Classification/BeiT | Unbatched | 13.477 | 7.926 |
Image Classification/BeiT | 4 | 15.103 | 14.378 |
Image Classification/BeiT | 16 | 52.517 | 51.691 |
Object Detection/DETR | Unbatched | 28.706 | 19.077 |
Object Detection/DETR | 4 | 88.402 | 62.949 |
Object Detection/DETR | 16 | OOM | OOM |
Reduce Overhead
NightlyビルドでA100およびT4向けの reduce-overhead
コンパイルモードをベンチマークしました。
A100
Task/Model | Batch Size | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|---|
Image Classification/ConvNeXT | Unbatched | 11.758 | 7.335 |
Image Classification/ConvNeXT | 4 | 23.171 | 21.490 |
Image Classification/ResNet | Unbatched | 7.435 | 3.801 |
Image Classification/ResNet | 4 | 7.261 | 2.187 |
Object Detection/Conditional-DETR | Unbatched | 32.823 | 11.627 |
Object Detection/Conditional-DETR | 4 | 50.622 | 33.831 |
Image Segmentation/MobileNet | Unbatched | 9.869 | 4.244 |
Image Segmentation/MobileNet | 4 | 14.385 | 7.946 |
T4
Task/Model | Batch Size | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|---|
Image Classification/ConvNeXT | Unbatched | 32.137 | 31.84 |
Image Classification/ConvNeXT | 4 | 120.944 | 110.209 |
Image Classification/ResNet | Unbatched | 9.761 | 7.698 |
Image Classification/ResNet | 4 | 15.215 | 13.871 |
Object Detection/Conditional-DETR | Unbatched | 72.150 | 57.660 |
Object Detection/Conditional-DETR | 4 | 301.494 | 247.543 |
Image Segmentation/MobileNet | Unbatched | 22.266 | 19.339 |
Image Segmentation/MobileNet | 4 | 78.311 | 50.983 |