Transformers documentation
Auto Classes
Auto Classes
多くの場合、from_pretrained()メソッドに与えられた事前学習済みモデルの名前やパスから、使用したいアーキテクチャを推測することができます。自動クラスはこの仕事をあなたに代わって行うためにここにありますので、事前学習済みの重み/設定/語彙への名前/パスを与えると自動的に関連するモデルを取得できます。
AutoConfig、AutoModel、AutoTokenizerのいずれかをインスタンス化すると、関連するアーキテクチャのクラスが直接作成されます。例えば、
model = AutoModel.from_pretrained("google-bert/bert-base-cased")これはBertModelのインスタンスであるモデルを作成します。
各タスクごと、そして各バックエンド(PyTorch、TensorFlow、またはFlax)ごとにAutoModelのクラスが存在します。
自動クラスの拡張
それぞれの自動クラスには、カスタムクラスで拡張するためのメソッドがあります。例えば、NewModelというモデルのカスタムクラスを定義した場合、NewModelConfigを確保しておけばこのようにして自動クラスに追加することができます:
from transformers import AutoConfig, AutoModel
AutoConfig.register("new-model", NewModelConfig)
AutoModel.register(NewModelConfig, NewModel)その後、通常どおりauto classesを使用することができるようになります!
あなたのNewModelConfigがPretrainedConfigのサブクラスである場合、そのmodel_type属性がコンフィグを登録するときに使用するキー(ここでは"new-model")と同じに設定されていることを確認してください。
同様に、あなたのNewModelがPreTrainedModelのサブクラスである場合、そのconfig_class属性がモデルを登録する際に使用するクラス(ここではNewModelConfig)と同じに設定されていることを確認してください。
AutoConfig
This is a generic configuration class that will be instantiated as one of the configuration classes of the library when created with the from_pretrained() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_pretrained
< source >( pretrained_model_name_or_path **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model configuration hosted inside a model repo on huggingface.co.
- A path to a directory containing a configuration file saved using the
save_pretrained() method, or the save_pretrained() method,
e.g.,
./my_model_directory/. - A path or url to a saved configuration JSON file, e.g.,
./my_model_directory/configuration.json.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download the model weights and configuration files and override the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - return_unused_kwargs (
bool, optional, defaults toFalse) — IfFalse, then this function returns just the final configuration object.If
True, then this functions returns aTuple(config, unused_kwargs)where unused_kwargs is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the part ofkwargswhich has not been used to updateconfigand is otherwise ignored. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - kwargs(additional keyword arguments, optional) —
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
values. Behavior concerning key/value pairs whose keys are not configuration attributes is controlled
by the
return_unused_kwargskeyword parameter.
Instantiate one of the configuration classes of the library from a pretrained model configuration.
The configuration class to instantiate is selected based on the model_type property of the config object that
is loaded, or when it’s missing, by falling back to using pattern matching on pretrained_model_name_or_path:
- albert — AlbertConfig (ALBERT model)
- align — AlignConfig (ALIGN model)
- altclip — AltCLIPConfig (AltCLIP model)
- audio-spectrogram-transformer — ASTConfig (Audio Spectrogram Transformer model)
- autoformer — AutoformerConfig (Autoformer model)
- bark — BarkConfig (Bark model)
- bart — BartConfig (BART model)
- beit — BeitConfig (BEiT model)
- bert — BertConfig (BERT model)
- bert-generation — BertGenerationConfig (Bert Generation model)
- big_bird — BigBirdConfig (BigBird model)
- bigbird_pegasus — BigBirdPegasusConfig (BigBird-Pegasus model)
- biogpt — BioGptConfig (BioGpt model)
- bit — BitConfig (BiT model)
- blenderbot — BlenderbotConfig (Blenderbot model)
- blenderbot-small — BlenderbotSmallConfig (BlenderbotSmall model)
- blip — BlipConfig (BLIP model)
- blip-2 — Blip2Config (BLIP-2 model)
- bloom — BloomConfig (BLOOM model)
- bridgetower — BridgeTowerConfig (BridgeTower model)
- bros — BrosConfig (BROS model)
- camembert — CamembertConfig (CamemBERT model)
- canine — CanineConfig (CANINE model)
- chameleon —
ChameleonConfig(Chameleon model) - chinese_clip — ChineseCLIPConfig (Chinese-CLIP model)
- chinese_clip_vision_model — ChineseCLIPVisionConfig (ChineseCLIPVisionModel model)
- clap — ClapConfig (CLAP model)
- clip — CLIPConfig (CLIP model)
- clip_vision_model — CLIPVisionConfig (CLIPVisionModel model)
- clipseg — CLIPSegConfig (CLIPSeg model)
- clvp — ClvpConfig (CLVP model)
- code_llama —
LlamaConfig(CodeLlama model) - codegen — CodeGenConfig (CodeGen model)
- cohere —
CohereConfig(Cohere model) - conditional_detr — ConditionalDetrConfig (Conditional DETR model)
- convbert — ConvBertConfig (ConvBERT model)
- convnext — ConvNextConfig (ConvNeXT model)
- convnextv2 — ConvNextV2Config (ConvNeXTV2 model)
- cpmant — CpmAntConfig (CPM-Ant model)
- ctrl — CTRLConfig (CTRL model)
- cvt — CvtConfig (CvT model)
- data2vec-audio — Data2VecAudioConfig (Data2VecAudio model)
- data2vec-text — Data2VecTextConfig (Data2VecText model)
- data2vec-vision — Data2VecVisionConfig (Data2VecVision model)
- dbrx —
DbrxConfig(DBRX model) - deberta — DebertaConfig (DeBERTa model)
- deberta-v2 — DebertaV2Config (DeBERTa-v2 model)
- decision_transformer — DecisionTransformerConfig (Decision Transformer model)
- deformable_detr — DeformableDetrConfig (Deformable DETR model)
- deit — DeiTConfig (DeiT model)
- depth_anything —
DepthAnythingConfig(Depth Anything model) - deta — DetaConfig (DETA model)
- detr — DetrConfig (DETR model)
- dinat — DinatConfig (DiNAT model)
- dinov2 —
Dinov2Config(DINOv2 model) - distilbert —
DistilBertConfig(DistilBERT model) - donut-swin —
DonutSwinConfig(DonutSwin model) - dpr —
DPRConfig(DPR model) - dpt —
DPTConfig(DPT model) - efficientformer —
EfficientFormerConfig(EfficientFormer model) - efficientnet —
EfficientNetConfig(EfficientNet model) - electra —
ElectraConfig(ELECTRA model) - encodec —
EncodecConfig(EnCodec model) - encoder-decoder —
EncoderDecoderConfig(Encoder decoder model) - ernie —
ErnieConfig(ERNIE model) - ernie_m —
ErnieMConfig(ErnieM model) - esm —
EsmConfig(ESM model) - falcon —
FalconConfig(Falcon model) - fastspeech2_conformer —
FastSpeech2ConformerConfig(FastSpeech2Conformer model) - flaubert —
FlaubertConfig(FlauBERT model) - flava —
FlavaConfig(FLAVA model) - fnet —
FNetConfig(FNet model) - focalnet —
FocalNetConfig(FocalNet model) - fsmt —
FSMTConfig(FairSeq Machine-Translation model) - funnel —
FunnelConfig(Funnel Transformer model) - fuyu —
FuyuConfig(Fuyu model) - gemma —
GemmaConfig(Gemma model) - gemma2 —
Gemma2Config(Gemma2 model) - git —
GitConfig(GIT model) - glpn —
GLPNConfig(GLPN model) - gpt-sw3 —
GPT2Config(GPT-Sw3 model) - gpt2 —
GPT2Config(OpenAI GPT-2 model) - gpt_bigcode —
GPTBigCodeConfig(GPTBigCode model) - gpt_neo —
GPTNeoConfig(GPT Neo model) - gpt_neox —
GPTNeoXConfig(GPT NeoX model) - gpt_neox_japanese —
GPTNeoXJapaneseConfig(GPT NeoX Japanese model) - gptj —
GPTJConfig(GPT-J model) - gptsan-japanese —
GPTSanJapaneseConfig(GPTSAN-japanese model) - graphormer —
GraphormerConfig(Graphormer model) - grounding-dino —
GroundingDinoConfig(Grounding DINO model) - groupvit —
GroupViTConfig(GroupViT model) - hiera —
HieraConfig(Hiera model) - hubert —
HubertConfig(Hubert model) - ibert —
IBertConfig(I-BERT model) - idefics —
IdeficsConfig(IDEFICS model) - idefics2 —
Idefics2Config(Idefics2 model) - imagegpt —
ImageGPTConfig(ImageGPT model) - informer —
InformerConfig(Informer model) - instructblip —
InstructBlipConfig(InstructBLIP model) - instructblipvideo —
InstructBlipVideoConfig(InstructBlipVideo model) - jamba —
JambaConfig(Jamba model) - jetmoe —
JetMoeConfig(JetMoe model) - jukebox —
JukeboxConfig(Jukebox model) - kosmos-2 —
Kosmos2Config(KOSMOS-2 model) - layoutlm —
LayoutLMConfig(LayoutLM model) - layoutlmv2 —
LayoutLMv2Config(LayoutLMv2 model) - layoutlmv3 —
LayoutLMv3Config(LayoutLMv3 model) - led —
LEDConfig(LED model) - levit —
LevitConfig(LeViT model) - lilt —
LiltConfig(LiLT model) - llama —
LlamaConfig(LLaMA model) - llava —
LlavaConfig(LLaVa model) - llava-next-video —
LlavaNextVideoConfig(LLaVa-NeXT-Video model) - llava_next —
LlavaNextConfig(LLaVA-NeXT model) - longformer —
LongformerConfig(Longformer model) - longt5 —
LongT5Config(LongT5 model) - luke —
LukeConfig(LUKE model) - lxmert —
LxmertConfig(LXMERT model) - m2m_100 —
M2M100Config(M2M100 model) - mamba —
MambaConfig(Mamba model) - marian —
MarianConfig(Marian model) - markuplm —
MarkupLMConfig(MarkupLM model) - mask2former —
Mask2FormerConfig(Mask2Former model) - maskformer —
MaskFormerConfig(MaskFormer model) - maskformer-swin —
MaskFormerSwinConfig(MaskFormerSwin model) - mbart —
MBartConfig(mBART model) - mctct —
MCTCTConfig(M-CTC-T model) - mega —
MegaConfig(MEGA model) - megatron-bert —
MegatronBertConfig(Megatron-BERT model) - mgp-str —
MgpstrConfig(MGP-STR model) - mistral —
MistralConfig(Mistral model) - mixtral —
MixtralConfig(Mixtral model) - mobilebert —
MobileBertConfig(MobileBERT model) - mobilenet_v1 —
MobileNetV1Config(MobileNetV1 model) - mobilenet_v2 —
MobileNetV2Config(MobileNetV2 model) - mobilevit —
MobileViTConfig(MobileViT model) - mobilevitv2 —
MobileViTV2Config(MobileViTV2 model) - mpnet —
MPNetConfig(MPNet model) - mpt —
MptConfig(MPT model) - mra —
MraConfig(MRA model) - mt5 —
MT5Config(MT5 model) - musicgen —
MusicgenConfig(MusicGen model) - musicgen_melody —
MusicgenMelodyConfig(MusicGen Melody model) - mvp —
MvpConfig(MVP model) - nat —
NatConfig(NAT model) - nezha —
NezhaConfig(Nezha model) - nllb-moe —
NllbMoeConfig(NLLB-MOE model) - nougat —
VisionEncoderDecoderConfig(Nougat model) - nystromformer —
NystromformerConfig(Nyströmformer model) - olmo —
OlmoConfig(OLMo model) - oneformer —
OneFormerConfig(OneFormer model) - open-llama —
OpenLlamaConfig(OpenLlama model) - openai-gpt —
OpenAIGPTConfig(OpenAI GPT model) - opt —
OPTConfig(OPT model) - owlv2 —
Owlv2Config(OWLv2 model) - owlvit —
OwlViTConfig(OWL-ViT model) - paligemma —
PaliGemmaConfig(PaliGemma model) - patchtsmixer —
PatchTSMixerConfig(PatchTSMixer model) - patchtst —
PatchTSTConfig(PatchTST model) - pegasus —
PegasusConfig(Pegasus model) - pegasus_x —
PegasusXConfig(PEGASUS-X model) - perceiver —
PerceiverConfig(Perceiver model) - persimmon —
PersimmonConfig(Persimmon model) - phi —
PhiConfig(Phi model) - phi3 —
Phi3Config(Phi3 model) - pix2struct —
Pix2StructConfig(Pix2Struct model) - plbart —
PLBartConfig(PLBart model) - poolformer —
PoolFormerConfig(PoolFormer model) - pop2piano —
Pop2PianoConfig(Pop2Piano model) - prophetnet —
ProphetNetConfig(ProphetNet model) - pvt —
PvtConfig(PVT model) - pvt_v2 —
PvtV2Config(PVTv2 model) - qdqbert —
QDQBertConfig(QDQBert model) - qwen2 —
Qwen2Config(Qwen2 model) - qwen2_moe —
Qwen2MoeConfig(Qwen2MoE model) - rag —
RagConfig(RAG model) - realm —
RealmConfig(REALM model) - recurrent_gemma —
RecurrentGemmaConfig(RecurrentGemma model) - reformer —
ReformerConfig(Reformer model) - regnet —
RegNetConfig(RegNet model) - rembert —
RemBertConfig(RemBERT model) - resnet —
ResNetConfig(ResNet model) - retribert —
RetriBertConfig(RetriBERT model) - roberta —
RobertaConfig(RoBERTa model) - roberta-prelayernorm —
RobertaPreLayerNormConfig(RoBERTa-PreLayerNorm model) - roc_bert —
RoCBertConfig(RoCBert model) - roformer —
RoFormerConfig(RoFormer model) - rt_detr —
RTDetrConfig(RT-DETR model) - rt_detr_resnet —
RTDetrResNetConfig(RT-DETR-ResNet model) - rwkv —
RwkvConfig(RWKV model) - sam —
SamConfig(SAM model) - seamless_m4t —
SeamlessM4TConfig(SeamlessM4T model) - seamless_m4t_v2 —
SeamlessM4Tv2Config(SeamlessM4Tv2 model) - segformer —
SegformerConfig(SegFormer model) - seggpt —
SegGptConfig(SegGPT model) - sew —
SEWConfig(SEW model) - sew-d —
SEWDConfig(SEW-D model) - siglip —
SiglipConfig(SigLIP model) - siglip_vision_model —
SiglipVisionConfig(SiglipVisionModel model) - speech-encoder-decoder —
SpeechEncoderDecoderConfig(Speech Encoder decoder model) - speech_to_text —
Speech2TextConfig(Speech2Text model) - speech_to_text_2 —
Speech2Text2Config(Speech2Text2 model) - speecht5 —
SpeechT5Config(SpeechT5 model) - splinter —
SplinterConfig(Splinter model) - squeezebert —
SqueezeBertConfig(SqueezeBERT model) - stablelm —
StableLmConfig(StableLm model) - starcoder2 —
Starcoder2Config(Starcoder2 model) - superpoint —
SuperPointConfig(SuperPoint model) - swiftformer —
SwiftFormerConfig(SwiftFormer model) - swin —
SwinConfig(Swin Transformer model) - swin2sr —
Swin2SRConfig(Swin2SR model) - swinv2 —
Swinv2Config(Swin Transformer V2 model) - switch_transformers —
SwitchTransformersConfig(SwitchTransformers model) - t5 —
T5Config(T5 model) - table-transformer —
TableTransformerConfig(Table Transformer model) - tapas —
TapasConfig(TAPAS model) - time_series_transformer —
TimeSeriesTransformerConfig(Time Series Transformer model) - timesformer —
TimesformerConfig(TimeSformer model) - timm_backbone —
TimmBackboneConfig(TimmBackbone model) - trajectory_transformer —
TrajectoryTransformerConfig(Trajectory Transformer model) - transfo-xl —
TransfoXLConfig(Transformer-XL model) - trocr —
TrOCRConfig(TrOCR model) - tvlt —
TvltConfig(TVLT model) - tvp —
TvpConfig(TVP model) - udop —
UdopConfig(UDOP model) - umt5 —
UMT5Config(UMT5 model) - unispeech —
UniSpeechConfig(UniSpeech model) - unispeech-sat —
UniSpeechSatConfig(UniSpeechSat model) - univnet —
UnivNetConfig(UnivNet model) - upernet —
UperNetConfig(UPerNet model) - van —
VanConfig(VAN model) - video_llava —
VideoLlavaConfig(VideoLlava model) - videomae —
VideoMAEConfig(VideoMAE model) - vilt —
ViltConfig(ViLT model) - vipllava —
VipLlavaConfig(VipLlava model) - vision-encoder-decoder —
VisionEncoderDecoderConfig(Vision Encoder decoder model) - vision-text-dual-encoder —
VisionTextDualEncoderConfig(VisionTextDualEncoder model) - visual_bert —
VisualBertConfig(VisualBERT model) - vit —
ViTConfig(ViT model) - vit_hybrid —
ViTHybridConfig(ViT Hybrid model) - vit_mae —
ViTMAEConfig(ViTMAE model) - vit_msn —
ViTMSNConfig(ViTMSN model) - vitdet —
VitDetConfig(VitDet model) - vitmatte —
VitMatteConfig(ViTMatte model) - vits —
VitsConfig(VITS model) - vivit —
VivitConfig(ViViT model) - wav2vec2 —
Wav2Vec2Config(Wav2Vec2 model) - wav2vec2-bert —
Wav2Vec2BertConfig(Wav2Vec2-BERT model) - wav2vec2-conformer —
Wav2Vec2ConformerConfig(Wav2Vec2-Conformer model) - wavlm —
WavLMConfig(WavLM model) - whisper —
WhisperConfig(Whisper model) - xclip —
XCLIPConfig(X-CLIP model) - xglm —
XGLMConfig(XGLM model) - xlm —
XLMConfig(XLM model) - xlm-prophetnet —
XLMProphetNetConfig(XLM-ProphetNet model) - xlm-roberta —
XLMRobertaConfig(XLM-RoBERTa model) - xlm-roberta-xl —
XLMRobertaXLConfig(XLM-RoBERTa-XL model) - xlnet —
XLNetConfig(XLNet model) - xmod —
XmodConfig(X-MOD model) - yolos —
YolosConfig(YOLOS model) - yoso —
YosoConfig(YOSO model) - zoedepth —
ZoeDepthConfig(ZoeDepth model)
Examples:
>>> from transformers import AutoConfig
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained("google-bert/bert-base-uncased")
>>> # Download configuration from huggingface.co (user-uploaded) and cache.
>>> config = AutoConfig.from_pretrained("dbmdz/bert-base-german-cased")
>>> # If configuration file is in a directory (e.g., was saved using *save_pretrained('./test/saved_model/')*).
>>> config = AutoConfig.from_pretrained("./test/bert_saved_model/")
>>> # Load a specific configuration file.
>>> config = AutoConfig.from_pretrained("./test/bert_saved_model/my_configuration.json")
>>> # Change some config attributes when loading a pretrained config.
>>> config = AutoConfig.from_pretrained("google-bert/bert-base-uncased", output_attentions=True, foo=False)
>>> config.output_attentions
True
>>> config, unused_kwargs = AutoConfig.from_pretrained(
... "google-bert/bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True
... )
>>> config.output_attentions
True
>>> unused_kwargs
{'foo': False}register
< source >( model_type config exist_ok = False )
Parameters
- model_type (
str) — The model type like “bert” or “gpt”. - config (PretrainedConfig) — The config to register.
Register a new configuration for this class.
AutoTokenizer
This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when created with the AutoTokenizer.from_pretrained() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_pretrained
< source >( pretrained_model_name_or_path *inputs **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a predefined tokenizer hosted inside a model repo on huggingface.co.
- A path to a directory containing vocabulary files required by the tokenizer, for instance saved
using the save_pretrained() method, e.g.,
./my_model_directory/. - A path or url to a single saved vocabulary file if and only if the tokenizer only requires a
single vocabulary file (like Bert or XLNet), e.g.:
./my_model_directory/vocab.txt. (Not applicable to all derived classes)
- inputs (additional positional arguments, optional) —
Will be passed along to the Tokenizer
__init__()method. - config (PretrainedConfig, optional) — The configuration object used to determine the tokenizer class to instantiate.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download the model weights and configuration files and override the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - subfolder (
str, optional) — In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for facebook/rag-token-base), specify it here. - use_fast (
bool, optional, defaults toTrue) — Use a fast Rust-based tokenizer if it is supported for a given model. If a fast tokenizer is not available for a given model, a normal Python-based tokenizer is returned instead. - tokenizer_type (
str, optional) — Tokenizer type to be loaded. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - kwargs (additional keyword arguments, optional) —
Will be passed to the Tokenizer
__init__()method. Can be used to set special tokens likebos_token,eos_token,unk_token,sep_token,pad_token,cls_token,mask_token,additional_special_tokens. See parameters in the__init__()for more details.
Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary.
The tokenizer class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — AlbertTokenizer or AlbertTokenizerFast (ALBERT model)
- align — BertTokenizer or BertTokenizerFast (ALIGN model)
- bark — BertTokenizer or BertTokenizerFast (Bark model)
- bart — BartTokenizer or BartTokenizerFast (BART model)
- barthez — BarthezTokenizer or BarthezTokenizerFast (BARThez model)
- bartpho — BartphoTokenizer (BARTpho model)
- bert — BertTokenizer or BertTokenizerFast (BERT model)
- bert-generation — BertGenerationTokenizer (Bert Generation model)
- bert-japanese — BertJapaneseTokenizer (BertJapanese model)
- bertweet — BertweetTokenizer (BERTweet model)
- big_bird — BigBirdTokenizer or BigBirdTokenizerFast (BigBird model)
- bigbird_pegasus —
PegasusTokenizerorPegasusTokenizerFast(BigBird-Pegasus model) - biogpt — BioGptTokenizer (BioGpt model)
- blenderbot — BlenderbotTokenizer or BlenderbotTokenizerFast (Blenderbot model)
- blenderbot-small — BlenderbotSmallTokenizer (BlenderbotSmall model)
- blip — BertTokenizer or BertTokenizerFast (BLIP model)
- blip-2 —
GPT2TokenizerorGPT2TokenizerFast(BLIP-2 model) - bloom — BloomTokenizerFast (BLOOM model)
- bridgetower —
RobertaTokenizerorRobertaTokenizerFast(BridgeTower model) - bros — BertTokenizer or BertTokenizerFast (BROS model)
- byt5 — ByT5Tokenizer (ByT5 model)
- camembert — CamembertTokenizer or CamembertTokenizerFast (CamemBERT model)
- canine — CanineTokenizer (CANINE model)
- chameleon —
LlamaTokenizerorLlamaTokenizerFast(Chameleon model) - chinese_clip — BertTokenizer or BertTokenizerFast (Chinese-CLIP model)
- clap —
RobertaTokenizerorRobertaTokenizerFast(CLAP model) - clip — CLIPTokenizer or CLIPTokenizerFast (CLIP model)
- clipseg — CLIPTokenizer or CLIPTokenizerFast (CLIPSeg model)
- clvp — ClvpTokenizer (CLVP model)
- code_llama — CodeLlamaTokenizer or CodeLlamaTokenizerFast (CodeLlama model)
- codegen — CodeGenTokenizer or CodeGenTokenizerFast (CodeGen model)
- cohere —
CohereTokenizerFast(Cohere model) - convbert — ConvBertTokenizer or ConvBertTokenizerFast (ConvBERT model)
- cpm — CpmTokenizer or CpmTokenizerFast (CPM model)
- cpmant — CpmAntTokenizer (CPM-Ant model)
- ctrl — CTRLTokenizer (CTRL model)
- data2vec-audio —
Wav2Vec2CTCTokenizer(Data2VecAudio model) - data2vec-text —
RobertaTokenizerorRobertaTokenizerFast(Data2VecText model) - dbrx —
GPT2TokenizerorGPT2TokenizerFast(DBRX model) - deberta — DebertaTokenizer or DebertaTokenizerFast (DeBERTa model)
- deberta-v2 — DebertaV2Tokenizer or DebertaV2TokenizerFast (DeBERTa-v2 model)
- distilbert —
DistilBertTokenizerorDistilBertTokenizerFast(DistilBERT model) - dpr —
DPRQuestionEncoderTokenizerorDPRQuestionEncoderTokenizerFast(DPR model) - electra —
ElectraTokenizerorElectraTokenizerFast(ELECTRA model) - ernie — BertTokenizer or BertTokenizerFast (ERNIE model)
- ernie_m —
ErnieMTokenizer(ErnieM model) - esm —
EsmTokenizer(ESM model) - falcon — PreTrainedTokenizerFast (Falcon model)
- fastspeech2_conformer — (FastSpeech2Conformer model)
- flaubert —
FlaubertTokenizer(FlauBERT model) - fnet —
FNetTokenizerorFNetTokenizerFast(FNet model) - fsmt —
FSMTTokenizer(FairSeq Machine-Translation model) - funnel —
FunnelTokenizerorFunnelTokenizerFast(Funnel Transformer model) - gemma —
GemmaTokenizerorGemmaTokenizerFast(Gemma model) - gemma2 —
GemmaTokenizerorGemmaTokenizerFast(Gemma2 model) - git — BertTokenizer or BertTokenizerFast (GIT model)
- gpt-sw3 —
GPTSw3Tokenizer(GPT-Sw3 model) - gpt2 —
GPT2TokenizerorGPT2TokenizerFast(OpenAI GPT-2 model) - gpt_bigcode —
GPT2TokenizerorGPT2TokenizerFast(GPTBigCode model) - gpt_neo —
GPT2TokenizerorGPT2TokenizerFast(GPT Neo model) - gpt_neox —
GPTNeoXTokenizerFast(GPT NeoX model) - gpt_neox_japanese —
GPTNeoXJapaneseTokenizer(GPT NeoX Japanese model) - gptj —
GPT2TokenizerorGPT2TokenizerFast(GPT-J model) - gptsan-japanese —
GPTSanJapaneseTokenizer(GPTSAN-japanese model) - grounding-dino — BertTokenizer or BertTokenizerFast (Grounding DINO model)
- groupvit — CLIPTokenizer or CLIPTokenizerFast (GroupViT model)
- herbert —
HerbertTokenizerorHerbertTokenizerFast(HerBERT model) - hubert —
Wav2Vec2CTCTokenizer(Hubert model) - ibert —
RobertaTokenizerorRobertaTokenizerFast(I-BERT model) - idefics —
LlamaTokenizerFast(IDEFICS model) - idefics2 —
LlamaTokenizerorLlamaTokenizerFast(Idefics2 model) - instructblip —
GPT2TokenizerorGPT2TokenizerFast(InstructBLIP model) - instructblipvideo —
GPT2TokenizerorGPT2TokenizerFast(InstructBlipVideo model) - jamba —
LlamaTokenizerorLlamaTokenizerFast(Jamba model) - jetmoe —
LlamaTokenizerorLlamaTokenizerFast(JetMoe model) - jukebox —
JukeboxTokenizer(Jukebox model) - kosmos-2 —
XLMRobertaTokenizerorXLMRobertaTokenizerFast(KOSMOS-2 model) - layoutlm —
LayoutLMTokenizerorLayoutLMTokenizerFast(LayoutLM model) - layoutlmv2 —
LayoutLMv2TokenizerorLayoutLMv2TokenizerFast(LayoutLMv2 model) - layoutlmv3 —
LayoutLMv3TokenizerorLayoutLMv3TokenizerFast(LayoutLMv3 model) - layoutxlm —
LayoutXLMTokenizerorLayoutXLMTokenizerFast(LayoutXLM model) - led —
LEDTokenizerorLEDTokenizerFast(LED model) - lilt —
LayoutLMv3TokenizerorLayoutLMv3TokenizerFast(LiLT model) - llama —
LlamaTokenizerorLlamaTokenizerFast(LLaMA model) - llava —
LlamaTokenizerorLlamaTokenizerFast(LLaVa model) - llava-next-video —
LlamaTokenizerorLlamaTokenizerFast(LLaVa-NeXT-Video model) - llava_next —
LlamaTokenizerorLlamaTokenizerFast(LLaVA-NeXT model) - longformer —
LongformerTokenizerorLongformerTokenizerFast(Longformer model) - longt5 —
T5TokenizerorT5TokenizerFast(LongT5 model) - luke —
LukeTokenizer(LUKE model) - lxmert —
LxmertTokenizerorLxmertTokenizerFast(LXMERT model) - m2m_100 —
M2M100Tokenizer(M2M100 model) - mamba —
GPTNeoXTokenizerFast(Mamba model) - marian —
MarianTokenizer(Marian model) - mbart —
MBartTokenizerorMBartTokenizerFast(mBART model) - mbart50 —
MBart50TokenizerorMBart50TokenizerFast(mBART-50 model) - mega —
RobertaTokenizerorRobertaTokenizerFast(MEGA model) - megatron-bert — BertTokenizer or BertTokenizerFast (Megatron-BERT model)
- mgp-str —
MgpstrTokenizer(MGP-STR model) - mistral —
LlamaTokenizerorLlamaTokenizerFast(Mistral model) - mixtral —
LlamaTokenizerorLlamaTokenizerFast(Mixtral model) - mluke —
MLukeTokenizer(mLUKE model) - mobilebert —
MobileBertTokenizerorMobileBertTokenizerFast(MobileBERT model) - mpnet —
MPNetTokenizerorMPNetTokenizerFast(MPNet model) - mpt —
GPTNeoXTokenizerFast(MPT model) - mra —
RobertaTokenizerorRobertaTokenizerFast(MRA model) - mt5 —
MT5TokenizerorMT5TokenizerFast(MT5 model) - musicgen —
T5TokenizerorT5TokenizerFast(MusicGen model) - musicgen_melody —
T5TokenizerorT5TokenizerFast(MusicGen Melody model) - mvp —
MvpTokenizerorMvpTokenizerFast(MVP model) - nezha — BertTokenizer or BertTokenizerFast (Nezha model)
- nllb —
NllbTokenizerorNllbTokenizerFast(NLLB model) - nllb-moe —
NllbTokenizerorNllbTokenizerFast(NLLB-MOE model) - nystromformer — AlbertTokenizer or AlbertTokenizerFast (Nyströmformer model)
- olmo —
GPTNeoXTokenizerFast(OLMo model) - oneformer — CLIPTokenizer or CLIPTokenizerFast (OneFormer model)
- openai-gpt —
OpenAIGPTTokenizerorOpenAIGPTTokenizerFast(OpenAI GPT model) - opt —
GPT2TokenizerorGPT2TokenizerFast(OPT model) - owlv2 — CLIPTokenizer or CLIPTokenizerFast (OWLv2 model)
- owlvit — CLIPTokenizer or CLIPTokenizerFast (OWL-ViT model)
- paligemma —
LlamaTokenizerorLlamaTokenizerFast(PaliGemma model) - pegasus —
PegasusTokenizerorPegasusTokenizerFast(Pegasus model) - pegasus_x —
PegasusTokenizerorPegasusTokenizerFast(PEGASUS-X model) - perceiver —
PerceiverTokenizer(Perceiver model) - persimmon —
LlamaTokenizerorLlamaTokenizerFast(Persimmon model) - phi — CodeGenTokenizer or CodeGenTokenizerFast (Phi model)
- phi3 —
LlamaTokenizerorLlamaTokenizerFast(Phi3 model) - phobert —
PhobertTokenizer(PhoBERT model) - pix2struct —
T5TokenizerorT5TokenizerFast(Pix2Struct model) - plbart —
PLBartTokenizer(PLBart model) - prophetnet —
ProphetNetTokenizer(ProphetNet model) - qdqbert — BertTokenizer or BertTokenizerFast (QDQBert model)
- qwen2 —
Qwen2TokenizerorQwen2TokenizerFast(Qwen2 model) - qwen2_moe —
Qwen2TokenizerorQwen2TokenizerFast(Qwen2MoE model) - rag —
RagTokenizer(RAG model) - realm —
RealmTokenizerorRealmTokenizerFast(REALM model) - recurrent_gemma —
GemmaTokenizerorGemmaTokenizerFast(RecurrentGemma model) - reformer —
ReformerTokenizerorReformerTokenizerFast(Reformer model) - rembert —
RemBertTokenizerorRemBertTokenizerFast(RemBERT model) - retribert —
RetriBertTokenizerorRetriBertTokenizerFast(RetriBERT model) - roberta —
RobertaTokenizerorRobertaTokenizerFast(RoBERTa model) - roberta-prelayernorm —
RobertaTokenizerorRobertaTokenizerFast(RoBERTa-PreLayerNorm model) - roc_bert —
RoCBertTokenizer(RoCBert model) - roformer —
RoFormerTokenizerorRoFormerTokenizerFast(RoFormer model) - rwkv —
GPTNeoXTokenizerFast(RWKV model) - seamless_m4t —
SeamlessM4TTokenizerorSeamlessM4TTokenizerFast(SeamlessM4T model) - seamless_m4t_v2 —
SeamlessM4TTokenizerorSeamlessM4TTokenizerFast(SeamlessM4Tv2 model) - siglip —
SiglipTokenizer(SigLIP model) - speech_to_text —
Speech2TextTokenizer(Speech2Text model) - speech_to_text_2 —
Speech2Text2Tokenizer(Speech2Text2 model) - speecht5 —
SpeechT5Tokenizer(SpeechT5 model) - splinter —
SplinterTokenizerorSplinterTokenizerFast(Splinter model) - squeezebert —
SqueezeBertTokenizerorSqueezeBertTokenizerFast(SqueezeBERT model) - stablelm —
GPTNeoXTokenizerFast(StableLm model) - starcoder2 —
GPT2TokenizerorGPT2TokenizerFast(Starcoder2 model) - switch_transformers —
T5TokenizerorT5TokenizerFast(SwitchTransformers model) - t5 —
T5TokenizerorT5TokenizerFast(T5 model) - tapas —
TapasTokenizer(TAPAS model) - tapex —
TapexTokenizer(TAPEX model) - transfo-xl —
TransfoXLTokenizer(Transformer-XL model) - tvp — BertTokenizer or BertTokenizerFast (TVP model)
- udop —
UdopTokenizerorUdopTokenizerFast(UDOP model) - umt5 —
T5TokenizerorT5TokenizerFast(UMT5 model) - video_llava —
LlamaTokenizerorLlamaTokenizerFast(VideoLlava model) - vilt — BertTokenizer or BertTokenizerFast (ViLT model)
- vipllava —
LlamaTokenizerorLlamaTokenizerFast(VipLlava model) - visual_bert — BertTokenizer or BertTokenizerFast (VisualBERT model)
- vits —
VitsTokenizer(VITS model) - wav2vec2 —
Wav2Vec2CTCTokenizer(Wav2Vec2 model) - wav2vec2-bert —
Wav2Vec2CTCTokenizer(Wav2Vec2-BERT model) - wav2vec2-conformer —
Wav2Vec2CTCTokenizer(Wav2Vec2-Conformer model) - wav2vec2_phoneme —
Wav2Vec2PhonemeCTCTokenizer(Wav2Vec2Phoneme model) - whisper —
WhisperTokenizerorWhisperTokenizerFast(Whisper model) - xclip — CLIPTokenizer or CLIPTokenizerFast (X-CLIP model)
- xglm —
XGLMTokenizerorXGLMTokenizerFast(XGLM model) - xlm —
XLMTokenizer(XLM model) - xlm-prophetnet —
XLMProphetNetTokenizer(XLM-ProphetNet model) - xlm-roberta —
XLMRobertaTokenizerorXLMRobertaTokenizerFast(XLM-RoBERTa model) - xlm-roberta-xl —
XLMRobertaTokenizerorXLMRobertaTokenizerFast(XLM-RoBERTa-XL model) - xlnet —
XLNetTokenizerorXLNetTokenizerFast(XLNet model) - xmod —
XLMRobertaTokenizerorXLMRobertaTokenizerFast(X-MOD model) - yoso — AlbertTokenizer or AlbertTokenizerFast (YOSO model)
Examples:
>>> from transformers import AutoTokenizer
>>> # Download vocabulary from huggingface.co and cache.
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> # Download vocabulary from huggingface.co (user-uploaded) and cache.
>>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased")
>>> # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*)
>>> # tokenizer = AutoTokenizer.from_pretrained("./test/bert_saved_model/")
>>> # Download vocabulary from huggingface.co and define model-specific arguments
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base", add_prefix_space=True)register
< source >( config_class slow_tokenizer_class = None fast_tokenizer_class = None exist_ok = False )
Parameters
- config_class (PretrainedConfig) — The configuration corresponding to the model to register.
- slow_tokenizer_class (
PretrainedTokenizer, optional) — The slow tokenizer to register. - fast_tokenizer_class (
PretrainedTokenizerFast, optional) — The fast tokenizer to register.
Register a new tokenizer in this mapping.
AutoFeatureExtractor
This is a generic feature extractor class that will be instantiated as one of the feature extractor classes of the library when created with the AutoFeatureExtractor.from_pretrained() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_pretrained
< source >( pretrained_model_name_or_path **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — This can be either:- a string, the model id of a pretrained feature_extractor hosted inside a model repo on huggingface.co.
- a path to a directory containing a feature extractor file saved using the
save_pretrained() method, e.g.,
./my_model_directory/. - a path or url to a saved feature extractor JSON file, e.g.,
./my_model_directory/preprocessor_config.json.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model feature extractor should be cached if the standard cache should not be used. - force_download (
bool, optional, defaults toFalse) — Whether or not to force to (re-)download the feature extractor files and override the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.The proxies are used on each request. - token (
stror bool, optional) — The token to use as HTTP bearer authorization for remote files. IfTrue, will use the token generated when runninghuggingface-cli login(stored in~/.huggingface). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - return_unused_kwargs (
bool, optional, defaults toFalse) — IfFalse, then this function returns just the final feature extractor object. IfTrue, then this functions returns aTuple(feature_extractor, unused_kwargs)where unused_kwargs is a dictionary consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part ofkwargswhich has not been used to updatefeature_extractorand is otherwise ignored. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - kwargs (
Dict[str, Any], optional) — The values in kwargs of any keys which are feature extractor attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are not feature extractor attributes is controlled by thereturn_unused_kwargskeyword parameter.
Instantiate one of the feature extractor classes of the library from a pretrained model vocabulary.
The feature extractor class to instantiate is selected based on the model_type property of the config object
(either passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s
missing, by falling back to using pattern matching on pretrained_model_name_or_path:
- audio-spectrogram-transformer — ASTFeatureExtractor (Audio Spectrogram Transformer model)
- beit — BeitFeatureExtractor (BEiT model)
- chinese_clip — ChineseCLIPFeatureExtractor (Chinese-CLIP model)
- clap — ClapFeatureExtractor (CLAP model)
- clip — CLIPFeatureExtractor (CLIP model)
- clipseg —
ViTFeatureExtractor(CLIPSeg model) - clvp — ClvpFeatureExtractor (CLVP model)
- conditional_detr — ConditionalDetrFeatureExtractor (Conditional DETR model)
- convnext — ConvNextFeatureExtractor (ConvNeXT model)
- cvt — ConvNextFeatureExtractor (CvT model)
- data2vec-audio —
Wav2Vec2FeatureExtractor(Data2VecAudio model) - data2vec-vision — BeitFeatureExtractor (Data2VecVision model)
- deformable_detr — DeformableDetrFeatureExtractor (Deformable DETR model)
- deit — DeiTFeatureExtractor (DeiT model)
- detr — DetrFeatureExtractor (DETR model)
- dinat —
ViTFeatureExtractor(DiNAT model) - donut-swin —
DonutFeatureExtractor(DonutSwin model) - dpt —
DPTFeatureExtractor(DPT model) - encodec —
EncodecFeatureExtractor(EnCodec model) - flava —
FlavaFeatureExtractor(FLAVA model) - glpn —
GLPNFeatureExtractor(GLPN model) - groupvit — CLIPFeatureExtractor (GroupViT model)
- hubert —
Wav2Vec2FeatureExtractor(Hubert model) - imagegpt —
ImageGPTFeatureExtractor(ImageGPT model) - layoutlmv2 —
LayoutLMv2FeatureExtractor(LayoutLMv2 model) - layoutlmv3 —
LayoutLMv3FeatureExtractor(LayoutLMv3 model) - levit —
LevitFeatureExtractor(LeViT model) - maskformer —
MaskFormerFeatureExtractor(MaskFormer model) - mctct —
MCTCTFeatureExtractor(M-CTC-T model) - mobilenet_v1 —
MobileNetV1FeatureExtractor(MobileNetV1 model) - mobilenet_v2 —
MobileNetV2FeatureExtractor(MobileNetV2 model) - mobilevit —
MobileViTFeatureExtractor(MobileViT model) - nat —
ViTFeatureExtractor(NAT model) - owlvit —
OwlViTFeatureExtractor(OWL-ViT model) - perceiver —
PerceiverFeatureExtractor(Perceiver model) - poolformer —
PoolFormerFeatureExtractor(PoolFormer model) - pop2piano —
Pop2PianoFeatureExtractor(Pop2Piano model) - regnet — ConvNextFeatureExtractor (RegNet model)
- resnet — ConvNextFeatureExtractor (ResNet model)
- seamless_m4t —
SeamlessM4TFeatureExtractor(SeamlessM4T model) - seamless_m4t_v2 —
SeamlessM4TFeatureExtractor(SeamlessM4Tv2 model) - segformer —
SegformerFeatureExtractor(SegFormer model) - sew —
Wav2Vec2FeatureExtractor(SEW model) - sew-d —
Wav2Vec2FeatureExtractor(SEW-D model) - speech_to_text —
Speech2TextFeatureExtractor(Speech2Text model) - speecht5 —
SpeechT5FeatureExtractor(SpeechT5 model) - swiftformer —
ViTFeatureExtractor(SwiftFormer model) - swin —
ViTFeatureExtractor(Swin Transformer model) - swinv2 —
ViTFeatureExtractor(Swin Transformer V2 model) - table-transformer — DetrFeatureExtractor (Table Transformer model)
- timesformer —
VideoMAEFeatureExtractor(TimeSformer model) - tvlt —
TvltFeatureExtractor(TVLT model) - unispeech —
Wav2Vec2FeatureExtractor(UniSpeech model) - unispeech-sat —
Wav2Vec2FeatureExtractor(UniSpeechSat model) - univnet —
UnivNetFeatureExtractor(UnivNet model) - van — ConvNextFeatureExtractor (VAN model)
- videomae —
VideoMAEFeatureExtractor(VideoMAE model) - vilt —
ViltFeatureExtractor(ViLT model) - vit —
ViTFeatureExtractor(ViT model) - vit_mae —
ViTFeatureExtractor(ViTMAE model) - vit_msn —
ViTFeatureExtractor(ViTMSN model) - wav2vec2 —
Wav2Vec2FeatureExtractor(Wav2Vec2 model) - wav2vec2-bert —
Wav2Vec2FeatureExtractor(Wav2Vec2-BERT model) - wav2vec2-conformer —
Wav2Vec2FeatureExtractor(Wav2Vec2-Conformer model) - wavlm —
Wav2Vec2FeatureExtractor(WavLM model) - whisper —
WhisperFeatureExtractor(Whisper model) - xclip — CLIPFeatureExtractor (X-CLIP model)
- yolos —
YolosFeatureExtractor(YOLOS model)
Passing token=True is required when you want to use a private model.
Examples:
>>> from transformers import AutoFeatureExtractor
>>> # Download feature extractor from huggingface.co and cache.
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
>>> # If feature extractor files are in a directory (e.g. feature extractor was saved using *save_pretrained('./test/saved_model/')*)
>>> # feature_extractor = AutoFeatureExtractor.from_pretrained("./test/saved_model/")register
< source >( config_class feature_extractor_class exist_ok = False )
Parameters
- config_class (PretrainedConfig) — The configuration corresponding to the model to register.
- feature_extractor_class (
FeatureExtractorMixin) — The feature extractor to register.
Register a new feature extractor for this class.
AutoImageProcessor
This is a generic image processor class that will be instantiated as one of the image processor classes of the library when created with the AutoImageProcessor.from_pretrained() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_pretrained
< source >( pretrained_model_name_or_path *inputs **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — This can be either:- a string, the model id of a pretrained image_processor hosted inside a model repo on huggingface.co.
- a path to a directory containing a image processor file saved using the
save_pretrained() method, e.g.,
./my_model_directory/. - a path or url to a saved image processor JSON file, e.g.,
./my_model_directory/preprocessor_config.json.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model image processor should be cached if the standard cache should not be used. - force_download (
bool, optional, defaults toFalse) — Whether or not to force to (re-)download the image processor files and override the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.The proxies are used on each request. - token (
stror bool, optional) — The token to use as HTTP bearer authorization for remote files. IfTrue, will use the token generated when runninghuggingface-cli login(stored in~/.huggingface). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - use_fast (
bool, optional, defaults toFalse) — Use a fast torchvision-base image processor if it is supported for a given model. If a fast tokenizer is not available for a given model, a normal numpy-based image processor is returned instead. - return_unused_kwargs (
bool, optional, defaults toFalse) — IfFalse, then this function returns just the final image processor object. IfTrue, then this functions returns aTuple(image_processor, unused_kwargs)where unused_kwargs is a dictionary consisting of the key/value pairs whose keys are not image processor attributes: i.e., the part ofkwargswhich has not been used to updateimage_processorand is otherwise ignored. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - kwargs (
Dict[str, Any], optional) — The values in kwargs of any keys which are image processor attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are not image processor attributes is controlled by thereturn_unused_kwargskeyword parameter.
Instantiate one of the image processor classes of the library from a pretrained model vocabulary.
The image processor class to instantiate is selected based on the model_type property of the config object
(either passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s
missing, by falling back to using pattern matching on pretrained_model_name_or_path:
- align —
EfficientNetImageProcessor(ALIGN model) - beit — BeitImageProcessor (BEiT model)
- bit — BitImageProcessor (BiT model)
- blip — BlipImageProcessor (BLIP model)
- blip-2 — BlipImageProcessor (BLIP-2 model)
- bridgetower — BridgeTowerImageProcessor (BridgeTower model)
- chameleon —
ChameleonImageProcessor(Chameleon model) - chinese_clip — ChineseCLIPImageProcessor (Chinese-CLIP model)
- clip — CLIPImageProcessor (CLIP model)
- clipseg —
ViTImageProcessororViTImageProcessorFast(CLIPSeg model) - conditional_detr — ConditionalDetrImageProcessor (Conditional DETR model)
- convnext — ConvNextImageProcessor (ConvNeXT model)
- convnextv2 — ConvNextImageProcessor (ConvNeXTV2 model)
- cvt — ConvNextImageProcessor (CvT model)
- data2vec-vision — BeitImageProcessor (Data2VecVision model)
- deformable_detr — DeformableDetrImageProcessor (Deformable DETR model)
- deit — DeiTImageProcessor (DeiT model)
- depth_anything —
DPTImageProcessor(Depth Anything model) - deta — DetaImageProcessor (DETA model)
- detr — DetrImageProcessor (DETR model)
- dinat —
ViTImageProcessororViTImageProcessorFast(DiNAT model) - dinov2 — BitImageProcessor (DINOv2 model)
- donut-swin —
DonutImageProcessor(DonutSwin model) - dpt —
DPTImageProcessor(DPT model) - efficientformer —
EfficientFormerImageProcessor(EfficientFormer model) - efficientnet —
EfficientNetImageProcessor(EfficientNet model) - flava —
FlavaImageProcessor(FLAVA model) - focalnet — BitImageProcessor (FocalNet model)
- fuyu —
FuyuImageProcessor(Fuyu model) - git — CLIPImageProcessor (GIT model)
- glpn —
GLPNImageProcessor(GLPN model) - grounding-dino —
GroundingDinoImageProcessor(Grounding DINO model) - groupvit — CLIPImageProcessor (GroupViT model)
- hiera — BitImageProcessor (Hiera model)
- idefics —
IdeficsImageProcessor(IDEFICS model) - idefics2 —
Idefics2ImageProcessor(Idefics2 model) - imagegpt —
ImageGPTImageProcessor(ImageGPT model) - instructblip — BlipImageProcessor (InstructBLIP model)
- instructblipvideo —
InstructBlipVideoImageProcessor(InstructBlipVideo model) - kosmos-2 — CLIPImageProcessor (KOSMOS-2 model)
- layoutlmv2 —
LayoutLMv2ImageProcessor(LayoutLMv2 model) - layoutlmv3 —
LayoutLMv3ImageProcessor(LayoutLMv3 model) - levit —
LevitImageProcessor(LeViT model) - llava — CLIPImageProcessor (LLaVa model)
- llava-next-video —
LlavaNextVideoImageProcessor(LLaVa-NeXT-Video model) - llava_next —
LlavaNextImageProcessor(LLaVA-NeXT model) - mask2former —
Mask2FormerImageProcessor(Mask2Former model) - maskformer —
MaskFormerImageProcessor(MaskFormer model) - mgp-str —
ViTImageProcessororViTImageProcessorFast(MGP-STR model) - mobilenet_v1 —
MobileNetV1ImageProcessor(MobileNetV1 model) - mobilenet_v2 —
MobileNetV2ImageProcessor(MobileNetV2 model) - mobilevit —
MobileViTImageProcessor(MobileViT model) - mobilevitv2 —
MobileViTImageProcessor(MobileViTV2 model) - nat —
ViTImageProcessororViTImageProcessorFast(NAT model) - nougat —
NougatImageProcessor(Nougat model) - oneformer —
OneFormerImageProcessor(OneFormer model) - owlv2 —
Owlv2ImageProcessor(OWLv2 model) - owlvit —
OwlViTImageProcessor(OWL-ViT model) - perceiver —
PerceiverImageProcessor(Perceiver model) - pix2struct —
Pix2StructImageProcessor(Pix2Struct model) - poolformer —
PoolFormerImageProcessor(PoolFormer model) - pvt —
PvtImageProcessor(PVT model) - pvt_v2 —
PvtImageProcessor(PVTv2 model) - regnet — ConvNextImageProcessor (RegNet model)
- resnet — ConvNextImageProcessor (ResNet model)
- rt_detr —
RorT(RT-DETR model) - sam —
SamImageProcessor(SAM model) - segformer —
SegformerImageProcessor(SegFormer model) - seggpt —
SegGptImageProcessor(SegGPT model) - siglip —
SiglipImageProcessor(SigLIP model) - swiftformer —
ViTImageProcessororViTImageProcessorFast(SwiftFormer model) - swin —
ViTImageProcessororViTImageProcessorFast(Swin Transformer model) - swin2sr —
Swin2SRImageProcessor(Swin2SR model) - swinv2 —
ViTImageProcessororViTImageProcessorFast(Swin Transformer V2 model) - table-transformer — DetrImageProcessor (Table Transformer model)
- timesformer —
VideoMAEImageProcessor(TimeSformer model) - tvlt —
TvltImageProcessor(TVLT model) - tvp —
TvpImageProcessor(TVP model) - udop —
LayoutLMv3ImageProcessor(UDOP model) - upernet —
SegformerImageProcessor(UPerNet model) - van — ConvNextImageProcessor (VAN model)
- videomae —
VideoMAEImageProcessor(VideoMAE model) - vilt —
ViltImageProcessor(ViLT model) - vipllava — CLIPImageProcessor (VipLlava model)
- vit —
ViTImageProcessororViTImageProcessorFast(ViT model) - vit_hybrid —
ViTHybridImageProcessor(ViT Hybrid model) - vit_mae —
ViTImageProcessororViTImageProcessorFast(ViTMAE model) - vit_msn —
ViTImageProcessororViTImageProcessorFast(ViTMSN model) - vitmatte —
VitMatteImageProcessor(ViTMatte model) - xclip — CLIPImageProcessor (X-CLIP model)
- yolos —
YolosImageProcessor(YOLOS model) - zoedepth —
ZoeDepthImageProcessor(ZoeDepth model)
Passing token=True is required when you want to use a private model.
Examples:
>>> from transformers import AutoImageProcessor
>>> # Download image processor from huggingface.co and cache.
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
>>> # If image processor files are in a directory (e.g. image processor was saved using *save_pretrained('./test/saved_model/')*)
>>> # image_processor = AutoImageProcessor.from_pretrained("./test/saved_model/")register
< source >( config_class image_processor_class = None slow_image_processor_class = None fast_image_processor_class = None exist_ok = False )
Parameters
- config_class (PretrainedConfig) — The configuration corresponding to the model to register.
- image_processor_class (ImageProcessingMixin) — The image processor to register.
Register a new image processor for this class.
AutoProcessor
This is a generic processor class that will be instantiated as one of the processor classes of the library when created with the AutoProcessor.from_pretrained() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_pretrained
< source >( pretrained_model_name_or_path **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — This can be either:- a string, the model id of a pretrained feature_extractor hosted inside a model repo on huggingface.co.
- a path to a directory containing a processor files saved using the
save_pretrained()method, e.g.,./my_model_directory/.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model feature extractor should be cached if the standard cache should not be used. - force_download (
bool, optional, defaults toFalse) — Whether or not to force to (re-)download the feature extractor files and override the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.The proxies are used on each request. - token (
stror bool, optional) — The token to use as HTTP bearer authorization for remote files. IfTrue, will use the token generated when runninghuggingface-cli login(stored in~/.huggingface). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - return_unused_kwargs (
bool, optional, defaults toFalse) — IfFalse, then this function returns just the final feature extractor object. IfTrue, then this functions returns aTuple(feature_extractor, unused_kwargs)where unused_kwargs is a dictionary consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part ofkwargswhich has not been used to updatefeature_extractorand is otherwise ignored. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - kwargs (
Dict[str, Any], optional) — The values in kwargs of any keys which are feature extractor attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are not feature extractor attributes is controlled by thereturn_unused_kwargskeyword parameter.
Instantiate one of the processor classes of the library from a pretrained model vocabulary.
The processor class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible):
- align — AlignProcessor (ALIGN model)
- altclip — AltCLIPProcessor (AltCLIP model)
- bark — BarkProcessor (Bark model)
- blip — BlipProcessor (BLIP model)
- blip-2 — Blip2Processor (BLIP-2 model)
- bridgetower — BridgeTowerProcessor (BridgeTower model)
- chameleon —
ChameleonProcessor(Chameleon model) - chinese_clip — ChineseCLIPProcessor (Chinese-CLIP model)
- clap — ClapProcessor (CLAP model)
- clip — CLIPProcessor (CLIP model)
- clipseg — CLIPSegProcessor (CLIPSeg model)
- clvp — ClvpProcessor (CLVP model)
- flava —
FlavaProcessor(FLAVA model) - fuyu —
FuyuProcessor(Fuyu model) - git —
GitProcessor(GIT model) - grounding-dino —
GroundingDinoProcessor(Grounding DINO model) - groupvit — CLIPProcessor (GroupViT model)
- hubert —
Wav2Vec2Processor(Hubert model) - idefics —
IdeficsProcessor(IDEFICS model) - idefics2 —
Idefics2Processor(Idefics2 model) - instructblip —
InstructBlipProcessor(InstructBLIP model) - instructblipvideo —
InstructBlipVideoProcessor(InstructBlipVideo model) - kosmos-2 —
Kosmos2Processor(KOSMOS-2 model) - layoutlmv2 —
LayoutLMv2Processor(LayoutLMv2 model) - layoutlmv3 —
LayoutLMv3Processor(LayoutLMv3 model) - llava —
LlavaProcessor(LLaVa model) - llava-next-video —
LlavaNextVideoProcessor(LLaVa-NeXT-Video model) - llava_next —
LlavaNextProcessor(LLaVA-NeXT model) - markuplm —
MarkupLMProcessor(MarkupLM model) - mctct —
MCTCTProcessor(M-CTC-T model) - mgp-str —
MgpstrProcessor(MGP-STR model) - oneformer —
OneFormerProcessor(OneFormer model) - owlv2 —
Owlv2Processor(OWLv2 model) - owlvit —
OwlViTProcessor(OWL-ViT model) - paligemma —
PaliGemmaProcessor(PaliGemma model) - pix2struct —
Pix2StructProcessor(Pix2Struct model) - pop2piano —
Pop2PianoProcessor(Pop2Piano model) - sam —
SamProcessor(SAM model) - seamless_m4t —
SeamlessM4TProcessor(SeamlessM4T model) - sew —
Wav2Vec2Processor(SEW model) - sew-d —
Wav2Vec2Processor(SEW-D model) - siglip —
SiglipProcessor(SigLIP model) - speech_to_text —
Speech2TextProcessor(Speech2Text model) - speech_to_text_2 —
Speech2Text2Processor(Speech2Text2 model) - speecht5 —
SpeechT5Processor(SpeechT5 model) - trocr —
TrOCRProcessor(TrOCR model) - tvlt —
TvltProcessor(TVLT model) - tvp —
TvpProcessor(TVP model) - unispeech —
Wav2Vec2Processor(UniSpeech model) - unispeech-sat —
Wav2Vec2Processor(UniSpeechSat model) - video_llava —
VideoLlavaProcessor(VideoLlava model) - vilt —
ViltProcessor(ViLT model) - vipllava —
LlavaProcessor(VipLlava model) - vision-text-dual-encoder —
VisionTextDualEncoderProcessor(VisionTextDualEncoder model) - wav2vec2 —
Wav2Vec2Processor(Wav2Vec2 model) - wav2vec2-bert —
Wav2Vec2Processor(Wav2Vec2-BERT model) - wav2vec2-conformer —
Wav2Vec2Processor(Wav2Vec2-Conformer model) - wavlm —
Wav2Vec2Processor(WavLM model) - whisper —
WhisperProcessor(Whisper model) - xclip —
XCLIPProcessor(X-CLIP model)
Passing token=True is required when you want to use a private model.
Examples:
>>> from transformers import AutoProcessor
>>> # Download processor from huggingface.co and cache.
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
>>> # If processor files are in a directory (e.g. processor was saved using *save_pretrained('./test/saved_model/')*)
>>> # processor = AutoProcessor.from_pretrained("./test/saved_model/")register
< source >( config_class processor_class exist_ok = False )
Parameters
- config_class (PretrainedConfig) — The configuration corresponding to the model to register.
- processor_class (
FeatureExtractorMixin) — The processor to register.
Register a new processor for this class.
Generic model classes
以下の自動クラスは、特定のヘッドを持たないベースモデルクラスをインスタンス化するために利用可能です。
AutoModel
This is a generic model class that will be instantiated as one of the base model classes of the library when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- ASTConfig configuration class: ASTModel (Audio Spectrogram Transformer model)
- AlbertConfig configuration class: AlbertModel (ALBERT model)
- AlignConfig configuration class: AlignModel (ALIGN model)
- AltCLIPConfig configuration class: AltCLIPModel (AltCLIP model)
- AutoformerConfig configuration class: AutoformerModel (Autoformer model)
- BarkConfig configuration class: BarkModel (Bark model)
- BartConfig configuration class: BartModel (BART model)
- BeitConfig configuration class: BeitModel (BEiT model)
- BertConfig configuration class: BertModel (BERT model)
- BertGenerationConfig configuration class: BertGenerationEncoder (Bert Generation model)
- BigBirdConfig configuration class: BigBirdModel (BigBird model)
- BigBirdPegasusConfig configuration class: BigBirdPegasusModel (BigBird-Pegasus model)
- BioGptConfig configuration class: BioGptModel (BioGpt model)
- BitConfig configuration class: BitModel (BiT model)
- BlenderbotConfig configuration class: BlenderbotModel (Blenderbot model)
- BlenderbotSmallConfig configuration class: BlenderbotSmallModel (BlenderbotSmall model)
- Blip2Config configuration class: Blip2Model (BLIP-2 model)
- BlipConfig configuration class: BlipModel (BLIP model)
- BloomConfig configuration class: BloomModel (BLOOM model)
- BridgeTowerConfig configuration class: BridgeTowerModel (BridgeTower model)
- BrosConfig configuration class: BrosModel (BROS model)
- CLIPConfig configuration class: CLIPModel (CLIP model)
- CLIPSegConfig configuration class: CLIPSegModel (CLIPSeg model)
- CLIPVisionConfig configuration class: CLIPVisionModel (CLIPVisionModel model)
- CTRLConfig configuration class: CTRLModel (CTRL model)
- CamembertConfig configuration class: CamembertModel (CamemBERT model)
- CanineConfig configuration class: CanineModel (CANINE model)
ChameleonConfigconfiguration class:ChameleonModel(Chameleon model)- ChineseCLIPConfig configuration class: ChineseCLIPModel (Chinese-CLIP model)
- ChineseCLIPVisionConfig configuration class: ChineseCLIPVisionModel (ChineseCLIPVisionModel model)
- ClapConfig configuration class: ClapModel (CLAP model)
- ClvpConfig configuration class: ClvpModelForConditionalGeneration (CLVP model)
- CodeGenConfig configuration class: CodeGenModel (CodeGen model)
CohereConfigconfiguration class:CohereModel(Cohere model)- ConditionalDetrConfig configuration class: ConditionalDetrModel (Conditional DETR model)
- ConvBertConfig configuration class: ConvBertModel (ConvBERT model)
- ConvNextConfig configuration class: ConvNextModel (ConvNeXT model)
- ConvNextV2Config configuration class: ConvNextV2Model (ConvNeXTV2 model)
- CpmAntConfig configuration class: CpmAntModel (CPM-Ant model)
- CvtConfig configuration class: CvtModel (CvT model)
DPRConfigconfiguration class:DPRQuestionEncoder(DPR model)DPTConfigconfiguration class:DPTModel(DPT model)- Data2VecAudioConfig configuration class: Data2VecAudioModel (Data2VecAudio model)
- Data2VecTextConfig configuration class: Data2VecTextModel (Data2VecText model)
- Data2VecVisionConfig configuration class: Data2VecVisionModel (Data2VecVision model)
DbrxConfigconfiguration class:DbrxModel(DBRX model)- DebertaConfig configuration class: DebertaModel (DeBERTa model)
- DebertaV2Config configuration class: DebertaV2Model (DeBERTa-v2 model)
- DecisionTransformerConfig configuration class: DecisionTransformerModel (Decision Transformer model)
- DeformableDetrConfig configuration class: DeformableDetrModel (Deformable DETR model)
- DeiTConfig configuration class: DeiTModel (DeiT model)
- DetaConfig configuration class: DetaModel (DETA model)
- DetrConfig configuration class: DetrModel (DETR model)
- DinatConfig configuration class: DinatModel (DiNAT model)
Dinov2Configconfiguration class:Dinov2Model(DINOv2 model)DistilBertConfigconfiguration class:DistilBertModel(DistilBERT model)DonutSwinConfigconfiguration class:DonutSwinModel(DonutSwin model)EfficientFormerConfigconfiguration class:EfficientFormerModel(EfficientFormer model)EfficientNetConfigconfiguration class:EfficientNetModel(EfficientNet model)ElectraConfigconfiguration class:ElectraModel(ELECTRA model)EncodecConfigconfiguration class:EncodecModel(EnCodec model)ErnieConfigconfiguration class:ErnieModel(ERNIE model)ErnieMConfigconfiguration class:ErnieMModel(ErnieM model)EsmConfigconfiguration class:EsmModel(ESM model)FNetConfigconfiguration class:FNetModel(FNet model)FSMTConfigconfiguration class:FSMTModel(FairSeq Machine-Translation model)FalconConfigconfiguration class:FalconModel(Falcon model)FastSpeech2ConformerConfigconfiguration class:FastSpeech2ConformerModel(FastSpeech2Conformer model)FlaubertConfigconfiguration class:FlaubertModel(FlauBERT model)FlavaConfigconfiguration class:FlavaModel(FLAVA model)FocalNetConfigconfiguration class:FocalNetModel(FocalNet model)FunnelConfigconfiguration class:FunnelModelorFunnelBaseModel(Funnel Transformer model)GLPNConfigconfiguration class:GLPNModel(GLPN model)GPT2Configconfiguration class:GPT2Model(OpenAI GPT-2 model)GPTBigCodeConfigconfiguration class:GPTBigCodeModel(GPTBigCode model)GPTJConfigconfiguration class:GPTJModel(GPT-J model)GPTNeoConfigconfiguration class:GPTNeoModel(GPT Neo model)GPTNeoXConfigconfiguration class:GPTNeoXModel(GPT NeoX model)GPTNeoXJapaneseConfigconfiguration class:GPTNeoXJapaneseModel(GPT NeoX Japanese model)GPTSanJapaneseConfigconfiguration class:GPTSanJapaneseForConditionalGeneration(GPTSAN-japanese model)Gemma2Configconfiguration class:Gemma2Model(Gemma2 model)GemmaConfigconfiguration class:GemmaModel(Gemma model)GitConfigconfiguration class:GitModel(GIT model)GraphormerConfigconfiguration class:GraphormerModel(Graphormer model)GroundingDinoConfigconfiguration class:GroundingDinoModel(Grounding DINO model)GroupViTConfigconfiguration class:GroupViTModel(GroupViT model)HieraConfigconfiguration class:HieraModel(Hiera model)HubertConfigconfiguration class:HubertModel(Hubert model)IBertConfigconfiguration class:IBertModel(I-BERT model)Idefics2Configconfiguration class:Idefics2Model(Idefics2 model)IdeficsConfigconfiguration class:IdeficsModel(IDEFICS model)ImageGPTConfigconfiguration class:ImageGPTModel(ImageGPT model)InformerConfigconfiguration class:InformerModel(Informer model)JambaConfigconfiguration class:JambaModel(Jamba model)JetMoeConfigconfiguration class:JetMoeModel(JetMoe model)JukeboxConfigconfiguration class:JukeboxModel(Jukebox model)Kosmos2Configconfiguration class:Kosmos2Model(KOSMOS-2 model)LEDConfigconfiguration class:LEDModel(LED model)LayoutLMConfigconfiguration class:LayoutLMModel(LayoutLM model)LayoutLMv2Configconfiguration class:LayoutLMv2Model(LayoutLMv2 model)LayoutLMv3Configconfiguration class:LayoutLMv3Model(LayoutLMv3 model)LevitConfigconfiguration class:LevitModel(LeViT model)LiltConfigconfiguration class:LiltModel(LiLT model)LlamaConfigconfiguration class:LlamaModel(LLaMA model)LongT5Configconfiguration class:LongT5Model(LongT5 model)LongformerConfigconfiguration class:LongformerModel(Longformer model)LukeConfigconfiguration class:LukeModel(LUKE model)LxmertConfigconfiguration class:LxmertModel(LXMERT model)M2M100Configconfiguration class:M2M100Model(M2M100 model)MBartConfigconfiguration class:MBartModel(mBART model)MCTCTConfigconfiguration class:MCTCTModel(M-CTC-T model)MPNetConfigconfiguration class:MPNetModel(MPNet model)MT5Configconfiguration class:MT5Model(MT5 model)MambaConfigconfiguration class:MambaModel(Mamba model)MarianConfigconfiguration class:MarianModel(Marian model)MarkupLMConfigconfiguration class:MarkupLMModel(MarkupLM model)Mask2FormerConfigconfiguration class:Mask2FormerModel(Mask2Former model)MaskFormerConfigconfiguration class:MaskFormerModel(MaskFormer model)MaskFormerSwinConfigconfiguration class:MaskFormerSwinModel(MaskFormerSwin model)MegaConfigconfiguration class:MegaModel(MEGA model)MegatronBertConfigconfiguration class:MegatronBertModel(Megatron-BERT model)MgpstrConfigconfiguration class:MgpstrForSceneTextRecognition(MGP-STR model)MistralConfigconfiguration class:MistralModel(Mistral model)MixtralConfigconfiguration class:MixtralModel(Mixtral model)MobileBertConfigconfiguration class:MobileBertModel(MobileBERT model)MobileNetV1Configconfiguration class:MobileNetV1Model(MobileNetV1 model)MobileNetV2Configconfiguration class:MobileNetV2Model(MobileNetV2 model)MobileViTConfigconfiguration class:MobileViTModel(MobileViT model)MobileViTV2Configconfiguration class:MobileViTV2Model(MobileViTV2 model)MptConfigconfiguration class:MptModel(MPT model)MraConfigconfiguration class:MraModel(MRA model)MusicgenConfigconfiguration class:MusicgenModel(MusicGen model)MusicgenMelodyConfigconfiguration class:MusicgenMelodyModel(MusicGen Melody model)MvpConfigconfiguration class:MvpModel(MVP model)NatConfigconfiguration class:NatModel(NAT model)NezhaConfigconfiguration class:NezhaModel(Nezha model)NllbMoeConfigconfiguration class:NllbMoeModel(NLLB-MOE model)NystromformerConfigconfiguration class:NystromformerModel(Nyströmformer model)OPTConfigconfiguration class:OPTModel(OPT model)OlmoConfigconfiguration class:OlmoModel(OLMo model)OneFormerConfigconfiguration class:OneFormerModel(OneFormer model)OpenAIGPTConfigconfiguration class:OpenAIGPTModel(OpenAI GPT model)OpenLlamaConfigconfiguration class:OpenLlamaModel(OpenLlama model)OwlViTConfigconfiguration class:OwlViTModel(OWL-ViT model)Owlv2Configconfiguration class:Owlv2Model(OWLv2 model)PLBartConfigconfiguration class:PLBartModel(PLBart model)PatchTSMixerConfigconfiguration class:PatchTSMixerModel(PatchTSMixer model)PatchTSTConfigconfiguration class:PatchTSTModel(PatchTST model)PegasusConfigconfiguration class:PegasusModel(Pegasus model)PegasusXConfigconfiguration class:PegasusXModel(PEGASUS-X model)PerceiverConfigconfiguration class:PerceiverModel(Perceiver model)PersimmonConfigconfiguration class:PersimmonModel(Persimmon model)Phi3Configconfiguration class:Phi3Model(Phi3 model)PhiConfigconfiguration class:PhiModel(Phi model)PoolFormerConfigconfiguration class:PoolFormerModel(PoolFormer model)ProphetNetConfigconfiguration class:ProphetNetModel(ProphetNet model)PvtConfigconfiguration class:PvtModel(PVT model)PvtV2Configconfiguration class:PvtV2Model(PVTv2 model)QDQBertConfigconfiguration class:QDQBertModel(QDQBert model)Qwen2Configconfiguration class:Qwen2Model(Qwen2 model)Qwen2MoeConfigconfiguration class:Qwen2MoeModel(Qwen2MoE model)RTDetrConfigconfiguration class:RTDetrModel(RT-DETR model)RecurrentGemmaConfigconfiguration class:RecurrentGemmaModel(RecurrentGemma model)ReformerConfigconfiguration class:ReformerModel(Reformer model)RegNetConfigconfiguration class:RegNetModel(RegNet model)RemBertConfigconfiguration class:RemBertModel(RemBERT model)ResNetConfigconfiguration class:ResNetModel(ResNet model)RetriBertConfigconfiguration class:RetriBertModel(RetriBERT model)RoCBertConfigconfiguration class:RoCBertModel(RoCBert model)RoFormerConfigconfiguration class:RoFormerModel(RoFormer model)RobertaConfigconfiguration class:RobertaModel(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:RobertaPreLayerNormModel(RoBERTa-PreLayerNorm model)RwkvConfigconfiguration class:RwkvModel(RWKV model)SEWConfigconfiguration class:SEWModel(SEW model)SEWDConfigconfiguration class:SEWDModel(SEW-D model)SamConfigconfiguration class:SamModel(SAM model)SeamlessM4TConfigconfiguration class:SeamlessM4TModel(SeamlessM4T model)SeamlessM4Tv2Configconfiguration class:SeamlessM4Tv2Model(SeamlessM4Tv2 model)SegGptConfigconfiguration class:SegGptModel(SegGPT model)SegformerConfigconfiguration class:SegformerModel(SegFormer model)SiglipConfigconfiguration class:SiglipModel(SigLIP model)SiglipVisionConfigconfiguration class:SiglipVisionModel(SiglipVisionModel model)Speech2TextConfigconfiguration class:Speech2TextModel(Speech2Text model)SpeechT5Configconfiguration class:SpeechT5Model(SpeechT5 model)SplinterConfigconfiguration class:SplinterModel(Splinter model)SqueezeBertConfigconfiguration class:SqueezeBertModel(SqueezeBERT model)StableLmConfigconfiguration class:StableLmModel(StableLm model)Starcoder2Configconfiguration class:Starcoder2Model(Starcoder2 model)SwiftFormerConfigconfiguration class:SwiftFormerModel(SwiftFormer model)Swin2SRConfigconfiguration class:Swin2SRModel(Swin2SR model)SwinConfigconfiguration class:SwinModel(Swin Transformer model)Swinv2Configconfiguration class:Swinv2Model(Swin Transformer V2 model)SwitchTransformersConfigconfiguration class:SwitchTransformersModel(SwitchTransformers model)T5Configconfiguration class:T5Model(T5 model)TableTransformerConfigconfiguration class:TableTransformerModel(Table Transformer model)TapasConfigconfiguration class:TapasModel(TAPAS model)TimeSeriesTransformerConfigconfiguration class:TimeSeriesTransformerModel(Time Series Transformer model)TimesformerConfigconfiguration class:TimesformerModel(TimeSformer model)TimmBackboneConfigconfiguration class:TimmBackbone(TimmBackbone model)TrajectoryTransformerConfigconfiguration class:TrajectoryTransformerModel(Trajectory Transformer model)TransfoXLConfigconfiguration class:TransfoXLModel(Transformer-XL model)TvltConfigconfiguration class:TvltModel(TVLT model)TvpConfigconfiguration class:TvpModel(TVP model)UMT5Configconfiguration class:UMT5Model(UMT5 model)UdopConfigconfiguration class:UdopModel(UDOP model)UniSpeechConfigconfiguration class:UniSpeechModel(UniSpeech model)UniSpeechSatConfigconfiguration class:UniSpeechSatModel(UniSpeechSat model)UnivNetConfigconfiguration class:UnivNetModel(UnivNet model)VanConfigconfiguration class:VanModel(VAN model)ViTConfigconfiguration class:ViTModel(ViT model)ViTHybridConfigconfiguration class:ViTHybridModel(ViT Hybrid model)ViTMAEConfigconfiguration class:ViTMAEModel(ViTMAE model)ViTMSNConfigconfiguration class:ViTMSNModel(ViTMSN model)VideoMAEConfigconfiguration class:VideoMAEModel(VideoMAE model)ViltConfigconfiguration class:ViltModel(ViLT model)VisionTextDualEncoderConfigconfiguration class:VisionTextDualEncoderModel(VisionTextDualEncoder model)VisualBertConfigconfiguration class:VisualBertModel(VisualBERT model)VitDetConfigconfiguration class:VitDetModel(VitDet model)VitsConfigconfiguration class:VitsModel(VITS model)VivitConfigconfiguration class:VivitModel(ViViT model)Wav2Vec2BertConfigconfiguration class:Wav2Vec2BertModel(Wav2Vec2-BERT model)Wav2Vec2Configconfiguration class:Wav2Vec2Model(Wav2Vec2 model)Wav2Vec2ConformerConfigconfiguration class:Wav2Vec2ConformerModel(Wav2Vec2-Conformer model)WavLMConfigconfiguration class:WavLMModel(WavLM model)WhisperConfigconfiguration class:WhisperModel(Whisper model)XCLIPConfigconfiguration class:XCLIPModel(X-CLIP model)XGLMConfigconfiguration class:XGLMModel(XGLM model)XLMConfigconfiguration class:XLMModel(XLM model)XLMProphetNetConfigconfiguration class:XLMProphetNetModel(XLM-ProphetNet model)XLMRobertaConfigconfiguration class:XLMRobertaModel(XLM-RoBERTa model)XLMRobertaXLConfigconfiguration class:XLMRobertaXLModel(XLM-RoBERTa-XL model)XLNetConfigconfiguration class:XLNetModel(XLNet model)XmodConfigconfiguration class:XmodModel(X-MOD model)YolosConfigconfiguration class:YolosModel(YOLOS model)YosoConfigconfiguration class:YosoModel(YOSO model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the base model classes of the library from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the base model classes of the library from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — AlbertModel (ALBERT model)
- align — AlignModel (ALIGN model)
- altclip — AltCLIPModel (AltCLIP model)
- audio-spectrogram-transformer — ASTModel (Audio Spectrogram Transformer model)
- autoformer — AutoformerModel (Autoformer model)
- bark — BarkModel (Bark model)
- bart — BartModel (BART model)
- beit — BeitModel (BEiT model)
- bert — BertModel (BERT model)
- bert-generation — BertGenerationEncoder (Bert Generation model)
- big_bird — BigBirdModel (BigBird model)
- bigbird_pegasus — BigBirdPegasusModel (BigBird-Pegasus model)
- biogpt — BioGptModel (BioGpt model)
- bit — BitModel (BiT model)
- blenderbot — BlenderbotModel (Blenderbot model)
- blenderbot-small — BlenderbotSmallModel (BlenderbotSmall model)
- blip — BlipModel (BLIP model)
- blip-2 — Blip2Model (BLIP-2 model)
- bloom — BloomModel (BLOOM model)
- bridgetower — BridgeTowerModel (BridgeTower model)
- bros — BrosModel (BROS model)
- camembert — CamembertModel (CamemBERT model)
- canine — CanineModel (CANINE model)
- chameleon —
ChameleonModel(Chameleon model) - chinese_clip — ChineseCLIPModel (Chinese-CLIP model)
- chinese_clip_vision_model — ChineseCLIPVisionModel (ChineseCLIPVisionModel model)
- clap — ClapModel (CLAP model)
- clip — CLIPModel (CLIP model)
- clip_vision_model — CLIPVisionModel (CLIPVisionModel model)
- clipseg — CLIPSegModel (CLIPSeg model)
- clvp — ClvpModelForConditionalGeneration (CLVP model)
- code_llama —
LlamaModel(CodeLlama model) - codegen — CodeGenModel (CodeGen model)
- cohere —
CohereModel(Cohere model) - conditional_detr — ConditionalDetrModel (Conditional DETR model)
- convbert — ConvBertModel (ConvBERT model)
- convnext — ConvNextModel (ConvNeXT model)
- convnextv2 — ConvNextV2Model (ConvNeXTV2 model)
- cpmant — CpmAntModel (CPM-Ant model)
- ctrl — CTRLModel (CTRL model)
- cvt — CvtModel (CvT model)
- data2vec-audio — Data2VecAudioModel (Data2VecAudio model)
- data2vec-text — Data2VecTextModel (Data2VecText model)
- data2vec-vision — Data2VecVisionModel (Data2VecVision model)
- dbrx —
DbrxModel(DBRX model) - deberta — DebertaModel (DeBERTa model)
- deberta-v2 — DebertaV2Model (DeBERTa-v2 model)
- decision_transformer — DecisionTransformerModel (Decision Transformer model)
- deformable_detr — DeformableDetrModel (Deformable DETR model)
- deit — DeiTModel (DeiT model)
- deta — DetaModel (DETA model)
- detr — DetrModel (DETR model)
- dinat — DinatModel (DiNAT model)
- dinov2 —
Dinov2Model(DINOv2 model) - distilbert —
DistilBertModel(DistilBERT model) - donut-swin —
DonutSwinModel(DonutSwin model) - dpr —
DPRQuestionEncoder(DPR model) - dpt —
DPTModel(DPT model) - efficientformer —
EfficientFormerModel(EfficientFormer model) - efficientnet —
EfficientNetModel(EfficientNet model) - electra —
ElectraModel(ELECTRA model) - encodec —
EncodecModel(EnCodec model) - ernie —
ErnieModel(ERNIE model) - ernie_m —
ErnieMModel(ErnieM model) - esm —
EsmModel(ESM model) - falcon —
FalconModel(Falcon model) - fastspeech2_conformer —
FastSpeech2ConformerModel(FastSpeech2Conformer model) - flaubert —
FlaubertModel(FlauBERT model) - flava —
FlavaModel(FLAVA model) - fnet —
FNetModel(FNet model) - focalnet —
FocalNetModel(FocalNet model) - fsmt —
FSMTModel(FairSeq Machine-Translation model) - funnel —
FunnelModelorFunnelBaseModel(Funnel Transformer model) - gemma —
GemmaModel(Gemma model) - gemma2 —
Gemma2Model(Gemma2 model) - git —
GitModel(GIT model) - glpn —
GLPNModel(GLPN model) - gpt-sw3 —
GPT2Model(GPT-Sw3 model) - gpt2 —
GPT2Model(OpenAI GPT-2 model) - gpt_bigcode —
GPTBigCodeModel(GPTBigCode model) - gpt_neo —
GPTNeoModel(GPT Neo model) - gpt_neox —
GPTNeoXModel(GPT NeoX model) - gpt_neox_japanese —
GPTNeoXJapaneseModel(GPT NeoX Japanese model) - gptj —
GPTJModel(GPT-J model) - gptsan-japanese —
GPTSanJapaneseForConditionalGeneration(GPTSAN-japanese model) - graphormer —
GraphormerModel(Graphormer model) - grounding-dino —
GroundingDinoModel(Grounding DINO model) - groupvit —
GroupViTModel(GroupViT model) - hiera —
HieraModel(Hiera model) - hubert —
HubertModel(Hubert model) - ibert —
IBertModel(I-BERT model) - idefics —
IdeficsModel(IDEFICS model) - idefics2 —
Idefics2Model(Idefics2 model) - imagegpt —
ImageGPTModel(ImageGPT model) - informer —
InformerModel(Informer model) - jamba —
JambaModel(Jamba model) - jetmoe —
JetMoeModel(JetMoe model) - jukebox —
JukeboxModel(Jukebox model) - kosmos-2 —
Kosmos2Model(KOSMOS-2 model) - layoutlm —
LayoutLMModel(LayoutLM model) - layoutlmv2 —
LayoutLMv2Model(LayoutLMv2 model) - layoutlmv3 —
LayoutLMv3Model(LayoutLMv3 model) - led —
LEDModel(LED model) - levit —
LevitModel(LeViT model) - lilt —
LiltModel(LiLT model) - llama —
LlamaModel(LLaMA model) - longformer —
LongformerModel(Longformer model) - longt5 —
LongT5Model(LongT5 model) - luke —
LukeModel(LUKE model) - lxmert —
LxmertModel(LXMERT model) - m2m_100 —
M2M100Model(M2M100 model) - mamba —
MambaModel(Mamba model) - marian —
MarianModel(Marian model) - markuplm —
MarkupLMModel(MarkupLM model) - mask2former —
Mask2FormerModel(Mask2Former model) - maskformer —
MaskFormerModel(MaskFormer model) - maskformer-swin —
MaskFormerSwinModel(MaskFormerSwin model) - mbart —
MBartModel(mBART model) - mctct —
MCTCTModel(M-CTC-T model) - mega —
MegaModel(MEGA model) - megatron-bert —
MegatronBertModel(Megatron-BERT model) - mgp-str —
MgpstrForSceneTextRecognition(MGP-STR model) - mistral —
MistralModel(Mistral model) - mixtral —
MixtralModel(Mixtral model) - mobilebert —
MobileBertModel(MobileBERT model) - mobilenet_v1 —
MobileNetV1Model(MobileNetV1 model) - mobilenet_v2 —
MobileNetV2Model(MobileNetV2 model) - mobilevit —
MobileViTModel(MobileViT model) - mobilevitv2 —
MobileViTV2Model(MobileViTV2 model) - mpnet —
MPNetModel(MPNet model) - mpt —
MptModel(MPT model) - mra —
MraModel(MRA model) - mt5 —
MT5Model(MT5 model) - musicgen —
MusicgenModel(MusicGen model) - musicgen_melody —
MusicgenMelodyModel(MusicGen Melody model) - mvp —
MvpModel(MVP model) - nat —
NatModel(NAT model) - nezha —
NezhaModel(Nezha model) - nllb-moe —
NllbMoeModel(NLLB-MOE model) - nystromformer —
NystromformerModel(Nyströmformer model) - olmo —
OlmoModel(OLMo model) - oneformer —
OneFormerModel(OneFormer model) - open-llama —
OpenLlamaModel(OpenLlama model) - openai-gpt —
OpenAIGPTModel(OpenAI GPT model) - opt —
OPTModel(OPT model) - owlv2 —
Owlv2Model(OWLv2 model) - owlvit —
OwlViTModel(OWL-ViT model) - patchtsmixer —
PatchTSMixerModel(PatchTSMixer model) - patchtst —
PatchTSTModel(PatchTST model) - pegasus —
PegasusModel(Pegasus model) - pegasus_x —
PegasusXModel(PEGASUS-X model) - perceiver —
PerceiverModel(Perceiver model) - persimmon —
PersimmonModel(Persimmon model) - phi —
PhiModel(Phi model) - phi3 —
Phi3Model(Phi3 model) - plbart —
PLBartModel(PLBart model) - poolformer —
PoolFormerModel(PoolFormer model) - prophetnet —
ProphetNetModel(ProphetNet model) - pvt —
PvtModel(PVT model) - pvt_v2 —
PvtV2Model(PVTv2 model) - qdqbert —
QDQBertModel(QDQBert model) - qwen2 —
Qwen2Model(Qwen2 model) - qwen2_moe —
Qwen2MoeModel(Qwen2MoE model) - recurrent_gemma —
RecurrentGemmaModel(RecurrentGemma model) - reformer —
ReformerModel(Reformer model) - regnet —
RegNetModel(RegNet model) - rembert —
RemBertModel(RemBERT model) - resnet —
ResNetModel(ResNet model) - retribert —
RetriBertModel(RetriBERT model) - roberta —
RobertaModel(RoBERTa model) - roberta-prelayernorm —
RobertaPreLayerNormModel(RoBERTa-PreLayerNorm model) - roc_bert —
RoCBertModel(RoCBert model) - roformer —
RoFormerModel(RoFormer model) - rt_detr —
RTDetrModel(RT-DETR model) - rwkv —
RwkvModel(RWKV model) - sam —
SamModel(SAM model) - seamless_m4t —
SeamlessM4TModel(SeamlessM4T model) - seamless_m4t_v2 —
SeamlessM4Tv2Model(SeamlessM4Tv2 model) - segformer —
SegformerModel(SegFormer model) - seggpt —
SegGptModel(SegGPT model) - sew —
SEWModel(SEW model) - sew-d —
SEWDModel(SEW-D model) - siglip —
SiglipModel(SigLIP model) - siglip_vision_model —
SiglipVisionModel(SiglipVisionModel model) - speech_to_text —
Speech2TextModel(Speech2Text model) - speecht5 —
SpeechT5Model(SpeechT5 model) - splinter —
SplinterModel(Splinter model) - squeezebert —
SqueezeBertModel(SqueezeBERT model) - stablelm —
StableLmModel(StableLm model) - starcoder2 —
Starcoder2Model(Starcoder2 model) - swiftformer —
SwiftFormerModel(SwiftFormer model) - swin —
SwinModel(Swin Transformer model) - swin2sr —
Swin2SRModel(Swin2SR model) - swinv2 —
Swinv2Model(Swin Transformer V2 model) - switch_transformers —
SwitchTransformersModel(SwitchTransformers model) - t5 —
T5Model(T5 model) - table-transformer —
TableTransformerModel(Table Transformer model) - tapas —
TapasModel(TAPAS model) - time_series_transformer —
TimeSeriesTransformerModel(Time Series Transformer model) - timesformer —
TimesformerModel(TimeSformer model) - timm_backbone —
TimmBackbone(TimmBackbone model) - trajectory_transformer —
TrajectoryTransformerModel(Trajectory Transformer model) - transfo-xl —
TransfoXLModel(Transformer-XL model) - tvlt —
TvltModel(TVLT model) - tvp —
TvpModel(TVP model) - udop —
UdopModel(UDOP model) - umt5 —
UMT5Model(UMT5 model) - unispeech —
UniSpeechModel(UniSpeech model) - unispeech-sat —
UniSpeechSatModel(UniSpeechSat model) - univnet —
UnivNetModel(UnivNet model) - van —
VanModel(VAN model) - videomae —
VideoMAEModel(VideoMAE model) - vilt —
ViltModel(ViLT model) - vision-text-dual-encoder —
VisionTextDualEncoderModel(VisionTextDualEncoder model) - visual_bert —
VisualBertModel(VisualBERT model) - vit —
ViTModel(ViT model) - vit_hybrid —
ViTHybridModel(ViT Hybrid model) - vit_mae —
ViTMAEModel(ViTMAE model) - vit_msn —
ViTMSNModel(ViTMSN model) - vitdet —
VitDetModel(VitDet model) - vits —
VitsModel(VITS model) - vivit —
VivitModel(ViViT model) - wav2vec2 —
Wav2Vec2Model(Wav2Vec2 model) - wav2vec2-bert —
Wav2Vec2BertModel(Wav2Vec2-BERT model) - wav2vec2-conformer —
Wav2Vec2ConformerModel(Wav2Vec2-Conformer model) - wavlm —
WavLMModel(WavLM model) - whisper —
WhisperModel(Whisper model) - xclip —
XCLIPModel(X-CLIP model) - xglm —
XGLMModel(XGLM model) - xlm —
XLMModel(XLM model) - xlm-prophetnet —
XLMProphetNetModel(XLM-ProphetNet model) - xlm-roberta —
XLMRobertaModel(XLM-RoBERTa model) - xlm-roberta-xl —
XLMRobertaXLModel(XLM-RoBERTa-XL model) - xlnet —
XLNetModel(XLNet model) - xmod —
XmodModel(X-MOD model) - yolos —
YolosModel(YOLOS model) - yoso —
YosoModel(YOSO model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModel
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModel.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModel.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModel.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )TFAutoModel
This is a generic model class that will be instantiated as one of the base model classes of the library when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: TFAlbertModel (ALBERT model)
- BartConfig configuration class: TFBartModel (BART model)
- BertConfig configuration class: TFBertModel (BERT model)
- BlenderbotConfig configuration class: TFBlenderbotModel (Blenderbot model)
- BlenderbotSmallConfig configuration class: TFBlenderbotSmallModel (BlenderbotSmall model)
- BlipConfig configuration class: TFBlipModel (BLIP model)
- CLIPConfig configuration class: TFCLIPModel (CLIP model)
- CTRLConfig configuration class: TFCTRLModel (CTRL model)
- CamembertConfig configuration class: TFCamembertModel (CamemBERT model)
- ConvBertConfig configuration class: TFConvBertModel (ConvBERT model)
- ConvNextConfig configuration class: TFConvNextModel (ConvNeXT model)
- ConvNextV2Config configuration class: TFConvNextV2Model (ConvNeXTV2 model)
- CvtConfig configuration class: TFCvtModel (CvT model)
DPRConfigconfiguration class:TFDPRQuestionEncoder(DPR model)- Data2VecVisionConfig configuration class: TFData2VecVisionModel (Data2VecVision model)
- DebertaConfig configuration class: TFDebertaModel (DeBERTa model)
- DebertaV2Config configuration class: TFDebertaV2Model (DeBERTa-v2 model)
- DeiTConfig configuration class: TFDeiTModel (DeiT model)
DistilBertConfigconfiguration class:TFDistilBertModel(DistilBERT model)EfficientFormerConfigconfiguration class:TFEfficientFormerModel(EfficientFormer model)ElectraConfigconfiguration class:TFElectraModel(ELECTRA model)EsmConfigconfiguration class:TFEsmModel(ESM model)FlaubertConfigconfiguration class:TFFlaubertModel(FlauBERT model)FunnelConfigconfiguration class:TFFunnelModelorTFFunnelBaseModel(Funnel Transformer model)GPT2Configconfiguration class:TFGPT2Model(OpenAI GPT-2 model)GPTJConfigconfiguration class:TFGPTJModel(GPT-J model)GroupViTConfigconfiguration class:TFGroupViTModel(GroupViT model)HubertConfigconfiguration class:TFHubertModel(Hubert model)IdeficsConfigconfiguration class:TFIdeficsModel(IDEFICS model)LEDConfigconfiguration class:TFLEDModel(LED model)LayoutLMConfigconfiguration class:TFLayoutLMModel(LayoutLM model)LayoutLMv3Configconfiguration class:TFLayoutLMv3Model(LayoutLMv3 model)LongformerConfigconfiguration class:TFLongformerModel(Longformer model)LxmertConfigconfiguration class:TFLxmertModel(LXMERT model)MBartConfigconfiguration class:TFMBartModel(mBART model)MPNetConfigconfiguration class:TFMPNetModel(MPNet model)MT5Configconfiguration class:TFMT5Model(MT5 model)MarianConfigconfiguration class:TFMarianModel(Marian model)MistralConfigconfiguration class:TFMistralModel(Mistral model)MobileBertConfigconfiguration class:TFMobileBertModel(MobileBERT model)MobileViTConfigconfiguration class:TFMobileViTModel(MobileViT model)OPTConfigconfiguration class:TFOPTModel(OPT model)OpenAIGPTConfigconfiguration class:TFOpenAIGPTModel(OpenAI GPT model)PegasusConfigconfiguration class:TFPegasusModel(Pegasus model)RegNetConfigconfiguration class:TFRegNetModel(RegNet model)RemBertConfigconfiguration class:TFRemBertModel(RemBERT model)ResNetConfigconfiguration class:TFResNetModel(ResNet model)RoFormerConfigconfiguration class:TFRoFormerModel(RoFormer model)RobertaConfigconfiguration class:TFRobertaModel(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:TFRobertaPreLayerNormModel(RoBERTa-PreLayerNorm model)SamConfigconfiguration class:TFSamModel(SAM model)SegformerConfigconfiguration class:TFSegformerModel(SegFormer model)Speech2TextConfigconfiguration class:TFSpeech2TextModel(Speech2Text model)SwiftFormerConfigconfiguration class:TFSwiftFormerModel(SwiftFormer model)SwinConfigconfiguration class:TFSwinModel(Swin Transformer model)T5Configconfiguration class:TFT5Model(T5 model)TapasConfigconfiguration class:TFTapasModel(TAPAS model)TransfoXLConfigconfiguration class:TFTransfoXLModel(Transformer-XL model)ViTConfigconfiguration class:TFViTModel(ViT model)ViTMAEConfigconfiguration class:TFViTMAEModel(ViTMAE model)VisionTextDualEncoderConfigconfiguration class:TFVisionTextDualEncoderModel(VisionTextDualEncoder model)Wav2Vec2Configconfiguration class:TFWav2Vec2Model(Wav2Vec2 model)WhisperConfigconfiguration class:TFWhisperModel(Whisper model)XGLMConfigconfiguration class:TFXGLMModel(XGLM model)XLMConfigconfiguration class:TFXLMModel(XLM model)XLMRobertaConfigconfiguration class:TFXLMRobertaModel(XLM-RoBERTa model)XLNetConfigconfiguration class:TFXLNetModel(XLNet model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the base model classes of the library from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the base model classes of the library from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — TFAlbertModel (ALBERT model)
- bart — TFBartModel (BART model)
- bert — TFBertModel (BERT model)
- blenderbot — TFBlenderbotModel (Blenderbot model)
- blenderbot-small — TFBlenderbotSmallModel (BlenderbotSmall model)
- blip — TFBlipModel (BLIP model)
- camembert — TFCamembertModel (CamemBERT model)
- clip — TFCLIPModel (CLIP model)
- convbert — TFConvBertModel (ConvBERT model)
- convnext — TFConvNextModel (ConvNeXT model)
- convnextv2 — TFConvNextV2Model (ConvNeXTV2 model)
- ctrl — TFCTRLModel (CTRL model)
- cvt — TFCvtModel (CvT model)
- data2vec-vision — TFData2VecVisionModel (Data2VecVision model)
- deberta — TFDebertaModel (DeBERTa model)
- deberta-v2 — TFDebertaV2Model (DeBERTa-v2 model)
- deit — TFDeiTModel (DeiT model)
- distilbert —
TFDistilBertModel(DistilBERT model) - dpr —
TFDPRQuestionEncoder(DPR model) - efficientformer —
TFEfficientFormerModel(EfficientFormer model) - electra —
TFElectraModel(ELECTRA model) - esm —
TFEsmModel(ESM model) - flaubert —
TFFlaubertModel(FlauBERT model) - funnel —
TFFunnelModelorTFFunnelBaseModel(Funnel Transformer model) - gpt-sw3 —
TFGPT2Model(GPT-Sw3 model) - gpt2 —
TFGPT2Model(OpenAI GPT-2 model) - gptj —
TFGPTJModel(GPT-J model) - groupvit —
TFGroupViTModel(GroupViT model) - hubert —
TFHubertModel(Hubert model) - idefics —
TFIdeficsModel(IDEFICS model) - layoutlm —
TFLayoutLMModel(LayoutLM model) - layoutlmv3 —
TFLayoutLMv3Model(LayoutLMv3 model) - led —
TFLEDModel(LED model) - longformer —
TFLongformerModel(Longformer model) - lxmert —
TFLxmertModel(LXMERT model) - marian —
TFMarianModel(Marian model) - mbart —
TFMBartModel(mBART model) - mistral —
TFMistralModel(Mistral model) - mobilebert —
TFMobileBertModel(MobileBERT model) - mobilevit —
TFMobileViTModel(MobileViT model) - mpnet —
TFMPNetModel(MPNet model) - mt5 —
TFMT5Model(MT5 model) - openai-gpt —
TFOpenAIGPTModel(OpenAI GPT model) - opt —
TFOPTModel(OPT model) - pegasus —
TFPegasusModel(Pegasus model) - regnet —
TFRegNetModel(RegNet model) - rembert —
TFRemBertModel(RemBERT model) - resnet —
TFResNetModel(ResNet model) - roberta —
TFRobertaModel(RoBERTa model) - roberta-prelayernorm —
TFRobertaPreLayerNormModel(RoBERTa-PreLayerNorm model) - roformer —
TFRoFormerModel(RoFormer model) - sam —
TFSamModel(SAM model) - segformer —
TFSegformerModel(SegFormer model) - speech_to_text —
TFSpeech2TextModel(Speech2Text model) - swiftformer —
TFSwiftFormerModel(SwiftFormer model) - swin —
TFSwinModel(Swin Transformer model) - t5 —
TFT5Model(T5 model) - tapas —
TFTapasModel(TAPAS model) - transfo-xl —
TFTransfoXLModel(Transformer-XL model) - vision-text-dual-encoder —
TFVisionTextDualEncoderModel(VisionTextDualEncoder model) - vit —
TFViTModel(ViT model) - vit_mae —
TFViTMAEModel(ViTMAE model) - wav2vec2 —
TFWav2Vec2Model(Wav2Vec2 model) - whisper —
TFWhisperModel(Whisper model) - xglm —
TFXGLMModel(XGLM model) - xlm —
TFXLMModel(XLM model) - xlm-roberta —
TFXLMRobertaModel(XLM-RoBERTa model) - xlnet —
TFXLNetModel(XLNet model)
Examples:
>>> from transformers import AutoConfig, TFAutoModel
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = TFAutoModel.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )FlaxAutoModel
This is a generic model class that will be instantiated as one of the base model classes of the library when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: FlaxAlbertModel (ALBERT model)
- BartConfig configuration class: FlaxBartModel (BART model)
- BeitConfig configuration class: FlaxBeitModel (BEiT model)
- BertConfig configuration class: FlaxBertModel (BERT model)
- BigBirdConfig configuration class: FlaxBigBirdModel (BigBird model)
- BlenderbotConfig configuration class: FlaxBlenderbotModel (Blenderbot model)
- BlenderbotSmallConfig configuration class: FlaxBlenderbotSmallModel (BlenderbotSmall model)
- BloomConfig configuration class: FlaxBloomModel (BLOOM model)
- CLIPConfig configuration class: FlaxCLIPModel (CLIP model)
DistilBertConfigconfiguration class:FlaxDistilBertModel(DistilBERT model)ElectraConfigconfiguration class:FlaxElectraModel(ELECTRA model)GPT2Configconfiguration class:FlaxGPT2Model(OpenAI GPT-2 model)GPTJConfigconfiguration class:FlaxGPTJModel(GPT-J model)GPTNeoConfigconfiguration class:FlaxGPTNeoModel(GPT Neo model)GemmaConfigconfiguration class:FlaxGemmaModel(Gemma model)LlamaConfigconfiguration class:FlaxLlamaModel(LLaMA model)LongT5Configconfiguration class:FlaxLongT5Model(LongT5 model)MBartConfigconfiguration class:FlaxMBartModel(mBART model)MT5Configconfiguration class:FlaxMT5Model(MT5 model)MarianConfigconfiguration class:FlaxMarianModel(Marian model)MistralConfigconfiguration class:FlaxMistralModel(Mistral model)OPTConfigconfiguration class:FlaxOPTModel(OPT model)PegasusConfigconfiguration class:FlaxPegasusModel(Pegasus model)RegNetConfigconfiguration class:FlaxRegNetModel(RegNet model)ResNetConfigconfiguration class:FlaxResNetModel(ResNet model)RoFormerConfigconfiguration class:FlaxRoFormerModel(RoFormer model)RobertaConfigconfiguration class:FlaxRobertaModel(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:FlaxRobertaPreLayerNormModel(RoBERTa-PreLayerNorm model)T5Configconfiguration class:FlaxT5Model(T5 model)ViTConfigconfiguration class:FlaxViTModel(ViT model)VisionTextDualEncoderConfigconfiguration class:FlaxVisionTextDualEncoderModel(VisionTextDualEncoder model)Wav2Vec2Configconfiguration class:FlaxWav2Vec2Model(Wav2Vec2 model)WhisperConfigconfiguration class:FlaxWhisperModel(Whisper model)XGLMConfigconfiguration class:FlaxXGLMModel(XGLM model)XLMRobertaConfigconfiguration class:FlaxXLMRobertaModel(XLM-RoBERTa model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the base model classes of the library from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the base model classes of the library from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — FlaxAlbertModel (ALBERT model)
- bart — FlaxBartModel (BART model)
- beit — FlaxBeitModel (BEiT model)
- bert — FlaxBertModel (BERT model)
- big_bird — FlaxBigBirdModel (BigBird model)
- blenderbot — FlaxBlenderbotModel (Blenderbot model)
- blenderbot-small — FlaxBlenderbotSmallModel (BlenderbotSmall model)
- bloom — FlaxBloomModel (BLOOM model)
- clip — FlaxCLIPModel (CLIP model)
- distilbert —
FlaxDistilBertModel(DistilBERT model) - electra —
FlaxElectraModel(ELECTRA model) - gemma —
FlaxGemmaModel(Gemma model) - gpt-sw3 —
FlaxGPT2Model(GPT-Sw3 model) - gpt2 —
FlaxGPT2Model(OpenAI GPT-2 model) - gpt_neo —
FlaxGPTNeoModel(GPT Neo model) - gptj —
FlaxGPTJModel(GPT-J model) - llama —
FlaxLlamaModel(LLaMA model) - longt5 —
FlaxLongT5Model(LongT5 model) - marian —
FlaxMarianModel(Marian model) - mbart —
FlaxMBartModel(mBART model) - mistral —
FlaxMistralModel(Mistral model) - mt5 —
FlaxMT5Model(MT5 model) - opt —
FlaxOPTModel(OPT model) - pegasus —
FlaxPegasusModel(Pegasus model) - regnet —
FlaxRegNetModel(RegNet model) - resnet —
FlaxResNetModel(ResNet model) - roberta —
FlaxRobertaModel(RoBERTa model) - roberta-prelayernorm —
FlaxRobertaPreLayerNormModel(RoBERTa-PreLayerNorm model) - roformer —
FlaxRoFormerModel(RoFormer model) - t5 —
FlaxT5Model(T5 model) - vision-text-dual-encoder —
FlaxVisionTextDualEncoderModel(VisionTextDualEncoder model) - vit —
FlaxViTModel(ViT model) - wav2vec2 —
FlaxWav2Vec2Model(Wav2Vec2 model) - whisper —
FlaxWhisperModel(Whisper model) - xglm —
FlaxXGLMModel(XGLM model) - xlm-roberta —
FlaxXLMRobertaModel(XLM-RoBERTa model)
Examples:
>>> from transformers import AutoConfig, FlaxAutoModel
>>> # Download model and configuration from huggingface.co and cache.
>>> model = FlaxAutoModel.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = FlaxAutoModel.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = FlaxAutoModel.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )Generic pretraining classes
以下の自動クラスは、事前学習ヘッドを持つモデルをインスタンス化するために利用可能です。
AutoModelForPreTraining
This is a generic model class that will be instantiated as one of the model classes of the library (with a pretraining head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: AlbertForPreTraining (ALBERT model)
- BartConfig configuration class: BartForConditionalGeneration (BART model)
- BertConfig configuration class: BertForPreTraining (BERT model)
- BigBirdConfig configuration class: BigBirdForPreTraining (BigBird model)
- BloomConfig configuration class: BloomForCausalLM (BLOOM model)
- CTRLConfig configuration class: CTRLLMHeadModel (CTRL model)
- CamembertConfig configuration class: CamembertForMaskedLM (CamemBERT model)
- Data2VecTextConfig configuration class: Data2VecTextForMaskedLM (Data2VecText model)
- DebertaConfig configuration class: DebertaForMaskedLM (DeBERTa model)
- DebertaV2Config configuration class: DebertaV2ForMaskedLM (DeBERTa-v2 model)
DistilBertConfigconfiguration class:DistilBertForMaskedLM(DistilBERT model)ElectraConfigconfiguration class:ElectraForPreTraining(ELECTRA model)ErnieConfigconfiguration class:ErnieForPreTraining(ERNIE model)FNetConfigconfiguration class:FNetForPreTraining(FNet model)FSMTConfigconfiguration class:FSMTForConditionalGeneration(FairSeq Machine-Translation model)FlaubertConfigconfiguration class:FlaubertWithLMHeadModel(FlauBERT model)FlavaConfigconfiguration class:FlavaForPreTraining(FLAVA model)FunnelConfigconfiguration class:FunnelForPreTraining(Funnel Transformer model)GPT2Configconfiguration class:GPT2LMHeadModel(OpenAI GPT-2 model)GPTBigCodeConfigconfiguration class:GPTBigCodeForCausalLM(GPTBigCode model)GPTSanJapaneseConfigconfiguration class:GPTSanJapaneseForConditionalGeneration(GPTSAN-japanese model)HieraConfigconfiguration class:HieraForPreTraining(Hiera model)IBertConfigconfiguration class:IBertForMaskedLM(I-BERT model)Idefics2Configconfiguration class:Idefics2ForConditionalGeneration(Idefics2 model)IdeficsConfigconfiguration class:IdeficsForVisionText2Text(IDEFICS model)LayoutLMConfigconfiguration class:LayoutLMForMaskedLM(LayoutLM model)LlavaConfigconfiguration class:LlavaForConditionalGeneration(LLaVa model)LlavaNextConfigconfiguration class:LlavaNextForConditionalGeneration(LLaVA-NeXT model)LlavaNextVideoConfigconfiguration class:LlavaNextVideoForConditionalGeneration(LLaVa-NeXT-Video model)LongformerConfigconfiguration class:LongformerForMaskedLM(Longformer model)LukeConfigconfiguration class:LukeForMaskedLM(LUKE model)LxmertConfigconfiguration class:LxmertForPreTraining(LXMERT model)MPNetConfigconfiguration class:MPNetForMaskedLM(MPNet model)MambaConfigconfiguration class:MambaForCausalLM(Mamba model)MegaConfigconfiguration class:MegaForMaskedLM(MEGA model)MegatronBertConfigconfiguration class:MegatronBertForPreTraining(Megatron-BERT model)MobileBertConfigconfiguration class:MobileBertForPreTraining(MobileBERT model)MptConfigconfiguration class:MptForCausalLM(MPT model)MraConfigconfiguration class:MraForMaskedLM(MRA model)MvpConfigconfiguration class:MvpForConditionalGeneration(MVP model)NezhaConfigconfiguration class:NezhaForPreTraining(Nezha model)NllbMoeConfigconfiguration class:NllbMoeForConditionalGeneration(NLLB-MOE model)OpenAIGPTConfigconfiguration class:OpenAIGPTLMHeadModel(OpenAI GPT model)PaliGemmaConfigconfiguration class:PaliGemmaForConditionalGeneration(PaliGemma model)RetriBertConfigconfiguration class:RetriBertModel(RetriBERT model)RoCBertConfigconfiguration class:RoCBertForPreTraining(RoCBert model)RobertaConfigconfiguration class:RobertaForMaskedLM(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:RobertaPreLayerNormForMaskedLM(RoBERTa-PreLayerNorm model)RwkvConfigconfiguration class:RwkvForCausalLM(RWKV model)SplinterConfigconfiguration class:SplinterForPreTraining(Splinter model)SqueezeBertConfigconfiguration class:SqueezeBertForMaskedLM(SqueezeBERT model)SwitchTransformersConfigconfiguration class:SwitchTransformersForConditionalGeneration(SwitchTransformers model)T5Configconfiguration class:T5ForConditionalGeneration(T5 model)TapasConfigconfiguration class:TapasForMaskedLM(TAPAS model)TransfoXLConfigconfiguration class:TransfoXLLMHeadModel(Transformer-XL model)TvltConfigconfiguration class:TvltForPreTraining(TVLT model)UniSpeechConfigconfiguration class:UniSpeechForPreTraining(UniSpeech model)UniSpeechSatConfigconfiguration class:UniSpeechSatForPreTraining(UniSpeechSat model)ViTMAEConfigconfiguration class:ViTMAEForPreTraining(ViTMAE model)VideoLlavaConfigconfiguration class:VideoLlavaForConditionalGeneration(VideoLlava model)VideoMAEConfigconfiguration class:VideoMAEForPreTraining(VideoMAE model)VipLlavaConfigconfiguration class:VipLlavaForConditionalGeneration(VipLlava model)VisualBertConfigconfiguration class:VisualBertForPreTraining(VisualBERT model)Wav2Vec2Configconfiguration class:Wav2Vec2ForPreTraining(Wav2Vec2 model)Wav2Vec2ConformerConfigconfiguration class:Wav2Vec2ConformerForPreTraining(Wav2Vec2-Conformer model)XLMConfigconfiguration class:XLMWithLMHeadModel(XLM model)XLMRobertaConfigconfiguration class:XLMRobertaForMaskedLM(XLM-RoBERTa model)XLMRobertaXLConfigconfiguration class:XLMRobertaXLForMaskedLM(XLM-RoBERTa-XL model)XLNetConfigconfiguration class:XLNetLMHeadModel(XLNet model)XmodConfigconfiguration class:XmodForMaskedLM(X-MOD model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a pretraining head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a pretraining head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — AlbertForPreTraining (ALBERT model)
- bart — BartForConditionalGeneration (BART model)
- bert — BertForPreTraining (BERT model)
- big_bird — BigBirdForPreTraining (BigBird model)
- bloom — BloomForCausalLM (BLOOM model)
- camembert — CamembertForMaskedLM (CamemBERT model)
- ctrl — CTRLLMHeadModel (CTRL model)
- data2vec-text — Data2VecTextForMaskedLM (Data2VecText model)
- deberta — DebertaForMaskedLM (DeBERTa model)
- deberta-v2 — DebertaV2ForMaskedLM (DeBERTa-v2 model)
- distilbert —
DistilBertForMaskedLM(DistilBERT model) - electra —
ElectraForPreTraining(ELECTRA model) - ernie —
ErnieForPreTraining(ERNIE model) - flaubert —
FlaubertWithLMHeadModel(FlauBERT model) - flava —
FlavaForPreTraining(FLAVA model) - fnet —
FNetForPreTraining(FNet model) - fsmt —
FSMTForConditionalGeneration(FairSeq Machine-Translation model) - funnel —
FunnelForPreTraining(Funnel Transformer model) - gpt-sw3 —
GPT2LMHeadModel(GPT-Sw3 model) - gpt2 —
GPT2LMHeadModel(OpenAI GPT-2 model) - gpt_bigcode —
GPTBigCodeForCausalLM(GPTBigCode model) - gptsan-japanese —
GPTSanJapaneseForConditionalGeneration(GPTSAN-japanese model) - hiera —
HieraForPreTraining(Hiera model) - ibert —
IBertForMaskedLM(I-BERT model) - idefics —
IdeficsForVisionText2Text(IDEFICS model) - idefics2 —
Idefics2ForConditionalGeneration(Idefics2 model) - layoutlm —
LayoutLMForMaskedLM(LayoutLM model) - llava —
LlavaForConditionalGeneration(LLaVa model) - llava-next-video —
LlavaNextVideoForConditionalGeneration(LLaVa-NeXT-Video model) - llava_next —
LlavaNextForConditionalGeneration(LLaVA-NeXT model) - longformer —
LongformerForMaskedLM(Longformer model) - luke —
LukeForMaskedLM(LUKE model) - lxmert —
LxmertForPreTraining(LXMERT model) - mamba —
MambaForCausalLM(Mamba model) - mega —
MegaForMaskedLM(MEGA model) - megatron-bert —
MegatronBertForPreTraining(Megatron-BERT model) - mobilebert —
MobileBertForPreTraining(MobileBERT model) - mpnet —
MPNetForMaskedLM(MPNet model) - mpt —
MptForCausalLM(MPT model) - mra —
MraForMaskedLM(MRA model) - mvp —
MvpForConditionalGeneration(MVP model) - nezha —
NezhaForPreTraining(Nezha model) - nllb-moe —
NllbMoeForConditionalGeneration(NLLB-MOE model) - openai-gpt —
OpenAIGPTLMHeadModel(OpenAI GPT model) - paligemma —
PaliGemmaForConditionalGeneration(PaliGemma model) - retribert —
RetriBertModel(RetriBERT model) - roberta —
RobertaForMaskedLM(RoBERTa model) - roberta-prelayernorm —
RobertaPreLayerNormForMaskedLM(RoBERTa-PreLayerNorm model) - roc_bert —
RoCBertForPreTraining(RoCBert model) - rwkv —
RwkvForCausalLM(RWKV model) - splinter —
SplinterForPreTraining(Splinter model) - squeezebert —
SqueezeBertForMaskedLM(SqueezeBERT model) - switch_transformers —
SwitchTransformersForConditionalGeneration(SwitchTransformers model) - t5 —
T5ForConditionalGeneration(T5 model) - tapas —
TapasForMaskedLM(TAPAS model) - transfo-xl —
TransfoXLLMHeadModel(Transformer-XL model) - tvlt —
TvltForPreTraining(TVLT model) - unispeech —
UniSpeechForPreTraining(UniSpeech model) - unispeech-sat —
UniSpeechSatForPreTraining(UniSpeechSat model) - video_llava —
VideoLlavaForConditionalGeneration(VideoLlava model) - videomae —
VideoMAEForPreTraining(VideoMAE model) - vipllava —
VipLlavaForConditionalGeneration(VipLlava model) - visual_bert —
VisualBertForPreTraining(VisualBERT model) - vit_mae —
ViTMAEForPreTraining(ViTMAE model) - wav2vec2 —
Wav2Vec2ForPreTraining(Wav2Vec2 model) - wav2vec2-conformer —
Wav2Vec2ConformerForPreTraining(Wav2Vec2-Conformer model) - xlm —
XLMWithLMHeadModel(XLM model) - xlm-roberta —
XLMRobertaForMaskedLM(XLM-RoBERTa model) - xlm-roberta-xl —
XLMRobertaXLForMaskedLM(XLM-RoBERTa-XL model) - xlnet —
XLNetLMHeadModel(XLNet model) - xmod —
XmodForMaskedLM(X-MOD model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForPreTraining
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForPreTraining.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForPreTraining.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForPreTraining.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )TFAutoModelForPreTraining
This is a generic model class that will be instantiated as one of the model classes of the library (with a pretraining head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: TFAlbertForPreTraining (ALBERT model)
- BartConfig configuration class: TFBartForConditionalGeneration (BART model)
- BertConfig configuration class: TFBertForPreTraining (BERT model)
- CTRLConfig configuration class: TFCTRLLMHeadModel (CTRL model)
- CamembertConfig configuration class: TFCamembertForMaskedLM (CamemBERT model)
DistilBertConfigconfiguration class:TFDistilBertForMaskedLM(DistilBERT model)ElectraConfigconfiguration class:TFElectraForPreTraining(ELECTRA model)FlaubertConfigconfiguration class:TFFlaubertWithLMHeadModel(FlauBERT model)FunnelConfigconfiguration class:TFFunnelForPreTraining(Funnel Transformer model)GPT2Configconfiguration class:TFGPT2LMHeadModel(OpenAI GPT-2 model)IdeficsConfigconfiguration class:TFIdeficsForVisionText2Text(IDEFICS model)LayoutLMConfigconfiguration class:TFLayoutLMForMaskedLM(LayoutLM model)LxmertConfigconfiguration class:TFLxmertForPreTraining(LXMERT model)MPNetConfigconfiguration class:TFMPNetForMaskedLM(MPNet model)MobileBertConfigconfiguration class:TFMobileBertForPreTraining(MobileBERT model)OpenAIGPTConfigconfiguration class:TFOpenAIGPTLMHeadModel(OpenAI GPT model)RobertaConfigconfiguration class:TFRobertaForMaskedLM(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:TFRobertaPreLayerNormForMaskedLM(RoBERTa-PreLayerNorm model)T5Configconfiguration class:TFT5ForConditionalGeneration(T5 model)TapasConfigconfiguration class:TFTapasForMaskedLM(TAPAS model)TransfoXLConfigconfiguration class:TFTransfoXLLMHeadModel(Transformer-XL model)ViTMAEConfigconfiguration class:TFViTMAEForPreTraining(ViTMAE model)XLMConfigconfiguration class:TFXLMWithLMHeadModel(XLM model)XLMRobertaConfigconfiguration class:TFXLMRobertaForMaskedLM(XLM-RoBERTa model)XLNetConfigconfiguration class:TFXLNetLMHeadModel(XLNet model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a pretraining head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a pretraining head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — TFAlbertForPreTraining (ALBERT model)
- bart — TFBartForConditionalGeneration (BART model)
- bert — TFBertForPreTraining (BERT model)
- camembert — TFCamembertForMaskedLM (CamemBERT model)
- ctrl — TFCTRLLMHeadModel (CTRL model)
- distilbert —
TFDistilBertForMaskedLM(DistilBERT model) - electra —
TFElectraForPreTraining(ELECTRA model) - flaubert —
TFFlaubertWithLMHeadModel(FlauBERT model) - funnel —
TFFunnelForPreTraining(Funnel Transformer model) - gpt-sw3 —
TFGPT2LMHeadModel(GPT-Sw3 model) - gpt2 —
TFGPT2LMHeadModel(OpenAI GPT-2 model) - idefics —
TFIdeficsForVisionText2Text(IDEFICS model) - layoutlm —
TFLayoutLMForMaskedLM(LayoutLM model) - lxmert —
TFLxmertForPreTraining(LXMERT model) - mobilebert —
TFMobileBertForPreTraining(MobileBERT model) - mpnet —
TFMPNetForMaskedLM(MPNet model) - openai-gpt —
TFOpenAIGPTLMHeadModel(OpenAI GPT model) - roberta —
TFRobertaForMaskedLM(RoBERTa model) - roberta-prelayernorm —
TFRobertaPreLayerNormForMaskedLM(RoBERTa-PreLayerNorm model) - t5 —
TFT5ForConditionalGeneration(T5 model) - tapas —
TFTapasForMaskedLM(TAPAS model) - transfo-xl —
TFTransfoXLLMHeadModel(Transformer-XL model) - vit_mae —
TFViTMAEForPreTraining(ViTMAE model) - xlm —
TFXLMWithLMHeadModel(XLM model) - xlm-roberta —
TFXLMRobertaForMaskedLM(XLM-RoBERTa model) - xlnet —
TFXLNetLMHeadModel(XLNet model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForPreTraining
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForPreTraining.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = TFAutoModelForPreTraining.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = TFAutoModelForPreTraining.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )FlaxAutoModelForPreTraining
This is a generic model class that will be instantiated as one of the model classes of the library (with a pretraining head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: FlaxAlbertForPreTraining (ALBERT model)
- BartConfig configuration class: FlaxBartForConditionalGeneration (BART model)
- BertConfig configuration class: FlaxBertForPreTraining (BERT model)
- BigBirdConfig configuration class: FlaxBigBirdForPreTraining (BigBird model)
ElectraConfigconfiguration class:FlaxElectraForPreTraining(ELECTRA model)LongT5Configconfiguration class:FlaxLongT5ForConditionalGeneration(LongT5 model)MBartConfigconfiguration class:FlaxMBartForConditionalGeneration(mBART model)MT5Configconfiguration class:FlaxMT5ForConditionalGeneration(MT5 model)RoFormerConfigconfiguration class:FlaxRoFormerForMaskedLM(RoFormer model)RobertaConfigconfiguration class:FlaxRobertaForMaskedLM(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:FlaxRobertaPreLayerNormForMaskedLM(RoBERTa-PreLayerNorm model)T5Configconfiguration class:FlaxT5ForConditionalGeneration(T5 model)Wav2Vec2Configconfiguration class:FlaxWav2Vec2ForPreTraining(Wav2Vec2 model)WhisperConfigconfiguration class:FlaxWhisperForConditionalGeneration(Whisper model)XLMRobertaConfigconfiguration class:FlaxXLMRobertaForMaskedLM(XLM-RoBERTa model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a pretraining head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a pretraining head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — FlaxAlbertForPreTraining (ALBERT model)
- bart — FlaxBartForConditionalGeneration (BART model)
- bert — FlaxBertForPreTraining (BERT model)
- big_bird — FlaxBigBirdForPreTraining (BigBird model)
- electra —
FlaxElectraForPreTraining(ELECTRA model) - longt5 —
FlaxLongT5ForConditionalGeneration(LongT5 model) - mbart —
FlaxMBartForConditionalGeneration(mBART model) - mt5 —
FlaxMT5ForConditionalGeneration(MT5 model) - roberta —
FlaxRobertaForMaskedLM(RoBERTa model) - roberta-prelayernorm —
FlaxRobertaPreLayerNormForMaskedLM(RoBERTa-PreLayerNorm model) - roformer —
FlaxRoFormerForMaskedLM(RoFormer model) - t5 —
FlaxT5ForConditionalGeneration(T5 model) - wav2vec2 —
FlaxWav2Vec2ForPreTraining(Wav2Vec2 model) - whisper —
FlaxWhisperForConditionalGeneration(Whisper model) - xlm-roberta —
FlaxXLMRobertaForMaskedLM(XLM-RoBERTa model)
Examples:
>>> from transformers import AutoConfig, FlaxAutoModelForPreTraining
>>> # Download model and configuration from huggingface.co and cache.
>>> model = FlaxAutoModelForPreTraining.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = FlaxAutoModelForPreTraining.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = FlaxAutoModelForPreTraining.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )Natural Language Processing
以下の自動クラスは、次の自然言語処理タスクに利用可能です。
AutoModelForCausalLM
This is a generic model class that will be instantiated as one of the model classes of the library (with a causal language modeling head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- BartConfig configuration class: BartForCausalLM (BART model)
- BertConfig configuration class: BertLMHeadModel (BERT model)
- BertGenerationConfig configuration class: BertGenerationDecoder (Bert Generation model)
- BigBirdConfig configuration class: BigBirdForCausalLM (BigBird model)
- BigBirdPegasusConfig configuration class: BigBirdPegasusForCausalLM (BigBird-Pegasus model)
- BioGptConfig configuration class: BioGptForCausalLM (BioGpt model)
- BlenderbotConfig configuration class: BlenderbotForCausalLM (Blenderbot model)
- BlenderbotSmallConfig configuration class: BlenderbotSmallForCausalLM (BlenderbotSmall model)
- BloomConfig configuration class: BloomForCausalLM (BLOOM model)
- CTRLConfig configuration class: CTRLLMHeadModel (CTRL model)
- CamembertConfig configuration class: CamembertForCausalLM (CamemBERT model)
- CodeGenConfig configuration class: CodeGenForCausalLM (CodeGen model)
CohereConfigconfiguration class:CohereForCausalLM(Cohere model)- CpmAntConfig configuration class: CpmAntForCausalLM (CPM-Ant model)
- Data2VecTextConfig configuration class: Data2VecTextForCausalLM (Data2VecText model)
DbrxConfigconfiguration class:DbrxForCausalLM(DBRX model)ElectraConfigconfiguration class:ElectraForCausalLM(ELECTRA model)ErnieConfigconfiguration class:ErnieForCausalLM(ERNIE model)FalconConfigconfiguration class:FalconForCausalLM(Falcon model)FuyuConfigconfiguration class:FuyuForCausalLM(Fuyu model)GPT2Configconfiguration class:GPT2LMHeadModel(OpenAI GPT-2 model)GPTBigCodeConfigconfiguration class:GPTBigCodeForCausalLM(GPTBigCode model)GPTJConfigconfiguration class:GPTJForCausalLM(GPT-J model)GPTNeoConfigconfiguration class:GPTNeoForCausalLM(GPT Neo model)GPTNeoXConfigconfiguration class:GPTNeoXForCausalLM(GPT NeoX model)GPTNeoXJapaneseConfigconfiguration class:GPTNeoXJapaneseForCausalLM(GPT NeoX Japanese model)Gemma2Configconfiguration class:Gemma2ForCausalLM(Gemma2 model)GemmaConfigconfiguration class:GemmaForCausalLM(Gemma model)GitConfigconfiguration class:GitForCausalLM(GIT model)JambaConfigconfiguration class:JambaForCausalLM(Jamba model)JetMoeConfigconfiguration class:JetMoeForCausalLM(JetMoe model)LlamaConfigconfiguration class:LlamaForCausalLM(LLaMA model)MBartConfigconfiguration class:MBartForCausalLM(mBART model)MambaConfigconfiguration class:MambaForCausalLM(Mamba model)MarianConfigconfiguration class:MarianForCausalLM(Marian model)MegaConfigconfiguration class:MegaForCausalLM(MEGA model)MegatronBertConfigconfiguration class:MegatronBertForCausalLM(Megatron-BERT model)MistralConfigconfiguration class:MistralForCausalLM(Mistral model)MixtralConfigconfiguration class:MixtralForCausalLM(Mixtral model)MptConfigconfiguration class:MptForCausalLM(MPT model)MusicgenConfigconfiguration class:MusicgenForCausalLM(MusicGen model)MusicgenMelodyConfigconfiguration class:MusicgenMelodyForCausalLM(MusicGen Melody model)MvpConfigconfiguration class:MvpForCausalLM(MVP model)OPTConfigconfiguration class:OPTForCausalLM(OPT model)OlmoConfigconfiguration class:OlmoForCausalLM(OLMo model)OpenAIGPTConfigconfiguration class:OpenAIGPTLMHeadModel(OpenAI GPT model)OpenLlamaConfigconfiguration class:OpenLlamaForCausalLM(OpenLlama model)PLBartConfigconfiguration class:PLBartForCausalLM(PLBart model)PegasusConfigconfiguration class:PegasusForCausalLM(Pegasus model)PersimmonConfigconfiguration class:PersimmonForCausalLM(Persimmon model)Phi3Configconfiguration class:Phi3ForCausalLM(Phi3 model)PhiConfigconfiguration class:PhiForCausalLM(Phi model)ProphetNetConfigconfiguration class:ProphetNetForCausalLM(ProphetNet model)QDQBertConfigconfiguration class:QDQBertLMHeadModel(QDQBert model)Qwen2Configconfiguration class:Qwen2ForCausalLM(Qwen2 model)Qwen2MoeConfigconfiguration class:Qwen2MoeForCausalLM(Qwen2MoE model)RecurrentGemmaConfigconfiguration class:RecurrentGemmaForCausalLM(RecurrentGemma model)ReformerConfigconfiguration class:ReformerModelWithLMHead(Reformer model)RemBertConfigconfiguration class:RemBertForCausalLM(RemBERT model)RoCBertConfigconfiguration class:RoCBertForCausalLM(RoCBert model)RoFormerConfigconfiguration class:RoFormerForCausalLM(RoFormer model)RobertaConfigconfiguration class:RobertaForCausalLM(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:RobertaPreLayerNormForCausalLM(RoBERTa-PreLayerNorm model)RwkvConfigconfiguration class:RwkvForCausalLM(RWKV model)Speech2Text2Configconfiguration class:Speech2Text2ForCausalLM(Speech2Text2 model)StableLmConfigconfiguration class:StableLmForCausalLM(StableLm model)Starcoder2Configconfiguration class:Starcoder2ForCausalLM(Starcoder2 model)TrOCRConfigconfiguration class:TrOCRForCausalLM(TrOCR model)TransfoXLConfigconfiguration class:TransfoXLLMHeadModel(Transformer-XL model)WhisperConfigconfiguration class:WhisperForCausalLM(Whisper model)XGLMConfigconfiguration class:XGLMForCausalLM(XGLM model)XLMConfigconfiguration class:XLMWithLMHeadModel(XLM model)XLMProphetNetConfigconfiguration class:XLMProphetNetForCausalLM(XLM-ProphetNet model)XLMRobertaConfigconfiguration class:XLMRobertaForCausalLM(XLM-RoBERTa model)XLMRobertaXLConfigconfiguration class:XLMRobertaXLForCausalLM(XLM-RoBERTa-XL model)XLNetConfigconfiguration class:XLNetLMHeadModel(XLNet model)XmodConfigconfiguration class:XmodForCausalLM(X-MOD model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a causal language modeling head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a causal language modeling head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- bart — BartForCausalLM (BART model)
- bert — BertLMHeadModel (BERT model)
- bert-generation — BertGenerationDecoder (Bert Generation model)
- big_bird — BigBirdForCausalLM (BigBird model)
- bigbird_pegasus — BigBirdPegasusForCausalLM (BigBird-Pegasus model)
- biogpt — BioGptForCausalLM (BioGpt model)
- blenderbot — BlenderbotForCausalLM (Blenderbot model)
- blenderbot-small — BlenderbotSmallForCausalLM (BlenderbotSmall model)
- bloom — BloomForCausalLM (BLOOM model)
- camembert — CamembertForCausalLM (CamemBERT model)
- code_llama —
LlamaForCausalLM(CodeLlama model) - codegen — CodeGenForCausalLM (CodeGen model)
- cohere —
CohereForCausalLM(Cohere model) - cpmant — CpmAntForCausalLM (CPM-Ant model)
- ctrl — CTRLLMHeadModel (CTRL model)
- data2vec-text — Data2VecTextForCausalLM (Data2VecText model)
- dbrx —
DbrxForCausalLM(DBRX model) - electra —
ElectraForCausalLM(ELECTRA model) - ernie —
ErnieForCausalLM(ERNIE model) - falcon —
FalconForCausalLM(Falcon model) - fuyu —
FuyuForCausalLM(Fuyu model) - gemma —
GemmaForCausalLM(Gemma model) - gemma2 —
Gemma2ForCausalLM(Gemma2 model) - git —
GitForCausalLM(GIT model) - gpt-sw3 —
GPT2LMHeadModel(GPT-Sw3 model) - gpt2 —
GPT2LMHeadModel(OpenAI GPT-2 model) - gpt_bigcode —
GPTBigCodeForCausalLM(GPTBigCode model) - gpt_neo —
GPTNeoForCausalLM(GPT Neo model) - gpt_neox —
GPTNeoXForCausalLM(GPT NeoX model) - gpt_neox_japanese —
GPTNeoXJapaneseForCausalLM(GPT NeoX Japanese model) - gptj —
GPTJForCausalLM(GPT-J model) - jamba —
JambaForCausalLM(Jamba model) - jetmoe —
JetMoeForCausalLM(JetMoe model) - llama —
LlamaForCausalLM(LLaMA model) - mamba —
MambaForCausalLM(Mamba model) - marian —
MarianForCausalLM(Marian model) - mbart —
MBartForCausalLM(mBART model) - mega —
MegaForCausalLM(MEGA model) - megatron-bert —
MegatronBertForCausalLM(Megatron-BERT model) - mistral —
MistralForCausalLM(Mistral model) - mixtral —
MixtralForCausalLM(Mixtral model) - mpt —
MptForCausalLM(MPT model) - musicgen —
MusicgenForCausalLM(MusicGen model) - musicgen_melody —
MusicgenMelodyForCausalLM(MusicGen Melody model) - mvp —
MvpForCausalLM(MVP model) - olmo —
OlmoForCausalLM(OLMo model) - open-llama —
OpenLlamaForCausalLM(OpenLlama model) - openai-gpt —
OpenAIGPTLMHeadModel(OpenAI GPT model) - opt —
OPTForCausalLM(OPT model) - pegasus —
PegasusForCausalLM(Pegasus model) - persimmon —
PersimmonForCausalLM(Persimmon model) - phi —
PhiForCausalLM(Phi model) - phi3 —
Phi3ForCausalLM(Phi3 model) - plbart —
PLBartForCausalLM(PLBart model) - prophetnet —
ProphetNetForCausalLM(ProphetNet model) - qdqbert —
QDQBertLMHeadModel(QDQBert model) - qwen2 —
Qwen2ForCausalLM(Qwen2 model) - qwen2_moe —
Qwen2MoeForCausalLM(Qwen2MoE model) - recurrent_gemma —
RecurrentGemmaForCausalLM(RecurrentGemma model) - reformer —
ReformerModelWithLMHead(Reformer model) - rembert —
RemBertForCausalLM(RemBERT model) - roberta —
RobertaForCausalLM(RoBERTa model) - roberta-prelayernorm —
RobertaPreLayerNormForCausalLM(RoBERTa-PreLayerNorm model) - roc_bert —
RoCBertForCausalLM(RoCBert model) - roformer —
RoFormerForCausalLM(RoFormer model) - rwkv —
RwkvForCausalLM(RWKV model) - speech_to_text_2 —
Speech2Text2ForCausalLM(Speech2Text2 model) - stablelm —
StableLmForCausalLM(StableLm model) - starcoder2 —
Starcoder2ForCausalLM(Starcoder2 model) - transfo-xl —
TransfoXLLMHeadModel(Transformer-XL model) - trocr —
TrOCRForCausalLM(TrOCR model) - whisper —
WhisperForCausalLM(Whisper model) - xglm —
XGLMForCausalLM(XGLM model) - xlm —
XLMWithLMHeadModel(XLM model) - xlm-prophetnet —
XLMProphetNetForCausalLM(XLM-ProphetNet model) - xlm-roberta —
XLMRobertaForCausalLM(XLM-RoBERTa model) - xlm-roberta-xl —
XLMRobertaXLForCausalLM(XLM-RoBERTa-XL model) - xlnet —
XLNetLMHeadModel(XLNet model) - xmod —
XmodForCausalLM(X-MOD model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForCausalLM
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForCausalLM.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForCausalLM.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForCausalLM.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )TFAutoModelForCausalLM
This is a generic model class that will be instantiated as one of the model classes of the library (with a causal language modeling head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- BertConfig configuration class: TFBertLMHeadModel (BERT model)
- CTRLConfig configuration class: TFCTRLLMHeadModel (CTRL model)
- CamembertConfig configuration class: TFCamembertForCausalLM (CamemBERT model)
GPT2Configconfiguration class:TFGPT2LMHeadModel(OpenAI GPT-2 model)GPTJConfigconfiguration class:TFGPTJForCausalLM(GPT-J model)MistralConfigconfiguration class:TFMistralForCausalLM(Mistral model)OPTConfigconfiguration class:TFOPTForCausalLM(OPT model)OpenAIGPTConfigconfiguration class:TFOpenAIGPTLMHeadModel(OpenAI GPT model)RemBertConfigconfiguration class:TFRemBertForCausalLM(RemBERT model)RoFormerConfigconfiguration class:TFRoFormerForCausalLM(RoFormer model)RobertaConfigconfiguration class:TFRobertaForCausalLM(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:TFRobertaPreLayerNormForCausalLM(RoBERTa-PreLayerNorm model)TransfoXLConfigconfiguration class:TFTransfoXLLMHeadModel(Transformer-XL model)XGLMConfigconfiguration class:TFXGLMForCausalLM(XGLM model)XLMConfigconfiguration class:TFXLMWithLMHeadModel(XLM model)XLMRobertaConfigconfiguration class:TFXLMRobertaForCausalLM(XLM-RoBERTa model)XLNetConfigconfiguration class:TFXLNetLMHeadModel(XLNet model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a causal language modeling head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a causal language modeling head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- bert — TFBertLMHeadModel (BERT model)
- camembert — TFCamembertForCausalLM (CamemBERT model)
- ctrl — TFCTRLLMHeadModel (CTRL model)
- gpt-sw3 —
TFGPT2LMHeadModel(GPT-Sw3 model) - gpt2 —
TFGPT2LMHeadModel(OpenAI GPT-2 model) - gptj —
TFGPTJForCausalLM(GPT-J model) - mistral —
TFMistralForCausalLM(Mistral model) - openai-gpt —
TFOpenAIGPTLMHeadModel(OpenAI GPT model) - opt —
TFOPTForCausalLM(OPT model) - rembert —
TFRemBertForCausalLM(RemBERT model) - roberta —
TFRobertaForCausalLM(RoBERTa model) - roberta-prelayernorm —
TFRobertaPreLayerNormForCausalLM(RoBERTa-PreLayerNorm model) - roformer —
TFRoFormerForCausalLM(RoFormer model) - transfo-xl —
TFTransfoXLLMHeadModel(Transformer-XL model) - xglm —
TFXGLMForCausalLM(XGLM model) - xlm —
TFXLMWithLMHeadModel(XLM model) - xlm-roberta —
TFXLMRobertaForCausalLM(XLM-RoBERTa model) - xlnet —
TFXLNetLMHeadModel(XLNet model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForCausalLM
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForCausalLM.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = TFAutoModelForCausalLM.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = TFAutoModelForCausalLM.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )FlaxAutoModelForCausalLM
This is a generic model class that will be instantiated as one of the model classes of the library (with a causal language modeling head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- BartConfig configuration class: FlaxBartForCausalLM (BART model)
- BertConfig configuration class: FlaxBertForCausalLM (BERT model)
- BigBirdConfig configuration class: FlaxBigBirdForCausalLM (BigBird model)
- BloomConfig configuration class: FlaxBloomForCausalLM (BLOOM model)
ElectraConfigconfiguration class:FlaxElectraForCausalLM(ELECTRA model)GPT2Configconfiguration class:FlaxGPT2LMHeadModel(OpenAI GPT-2 model)GPTJConfigconfiguration class:FlaxGPTJForCausalLM(GPT-J model)GPTNeoConfigconfiguration class:FlaxGPTNeoForCausalLM(GPT Neo model)GemmaConfigconfiguration class:FlaxGemmaForCausalLM(Gemma model)LlamaConfigconfiguration class:FlaxLlamaForCausalLM(LLaMA model)MistralConfigconfiguration class:FlaxMistralForCausalLM(Mistral model)OPTConfigconfiguration class:FlaxOPTForCausalLM(OPT model)RobertaConfigconfiguration class:FlaxRobertaForCausalLM(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:FlaxRobertaPreLayerNormForCausalLM(RoBERTa-PreLayerNorm model)XGLMConfigconfiguration class:FlaxXGLMForCausalLM(XGLM model)XLMRobertaConfigconfiguration class:FlaxXLMRobertaForCausalLM(XLM-RoBERTa model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a causal language modeling head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a causal language modeling head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- bart — FlaxBartForCausalLM (BART model)
- bert — FlaxBertForCausalLM (BERT model)
- big_bird — FlaxBigBirdForCausalLM (BigBird model)
- bloom — FlaxBloomForCausalLM (BLOOM model)
- electra —
FlaxElectraForCausalLM(ELECTRA model) - gemma —
FlaxGemmaForCausalLM(Gemma model) - gpt-sw3 —
FlaxGPT2LMHeadModel(GPT-Sw3 model) - gpt2 —
FlaxGPT2LMHeadModel(OpenAI GPT-2 model) - gpt_neo —
FlaxGPTNeoForCausalLM(GPT Neo model) - gptj —
FlaxGPTJForCausalLM(GPT-J model) - llama —
FlaxLlamaForCausalLM(LLaMA model) - mistral —
FlaxMistralForCausalLM(Mistral model) - opt —
FlaxOPTForCausalLM(OPT model) - roberta —
FlaxRobertaForCausalLM(RoBERTa model) - roberta-prelayernorm —
FlaxRobertaPreLayerNormForCausalLM(RoBERTa-PreLayerNorm model) - xglm —
FlaxXGLMForCausalLM(XGLM model) - xlm-roberta —
FlaxXLMRobertaForCausalLM(XLM-RoBERTa model)
Examples:
>>> from transformers import AutoConfig, FlaxAutoModelForCausalLM
>>> # Download model and configuration from huggingface.co and cache.
>>> model = FlaxAutoModelForCausalLM.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = FlaxAutoModelForCausalLM.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = FlaxAutoModelForCausalLM.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )AutoModelForMaskedLM
This is a generic model class that will be instantiated as one of the model classes of the library (with a masked language modeling head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: AlbertForMaskedLM (ALBERT model)
- BartConfig configuration class: BartForConditionalGeneration (BART model)
- BertConfig configuration class: BertForMaskedLM (BERT model)
- BigBirdConfig configuration class: BigBirdForMaskedLM (BigBird model)
- CamembertConfig configuration class: CamembertForMaskedLM (CamemBERT model)
- ConvBertConfig configuration class: ConvBertForMaskedLM (ConvBERT model)
- Data2VecTextConfig configuration class: Data2VecTextForMaskedLM (Data2VecText model)
- DebertaConfig configuration class: DebertaForMaskedLM (DeBERTa model)
- DebertaV2Config configuration class: DebertaV2ForMaskedLM (DeBERTa-v2 model)
DistilBertConfigconfiguration class:DistilBertForMaskedLM(DistilBERT model)ElectraConfigconfiguration class:ElectraForMaskedLM(ELECTRA model)ErnieConfigconfiguration class:ErnieForMaskedLM(ERNIE model)EsmConfigconfiguration class:EsmForMaskedLM(ESM model)FNetConfigconfiguration class:FNetForMaskedLM(FNet model)FlaubertConfigconfiguration class:FlaubertWithLMHeadModel(FlauBERT model)FunnelConfigconfiguration class:FunnelForMaskedLM(Funnel Transformer model)IBertConfigconfiguration class:IBertForMaskedLM(I-BERT model)LayoutLMConfigconfiguration class:LayoutLMForMaskedLM(LayoutLM model)LongformerConfigconfiguration class:LongformerForMaskedLM(Longformer model)LukeConfigconfiguration class:LukeForMaskedLM(LUKE model)MBartConfigconfiguration class:MBartForConditionalGeneration(mBART model)MPNetConfigconfiguration class:MPNetForMaskedLM(MPNet model)MegaConfigconfiguration class:MegaForMaskedLM(MEGA model)MegatronBertConfigconfiguration class:MegatronBertForMaskedLM(Megatron-BERT model)MobileBertConfigconfiguration class:MobileBertForMaskedLM(MobileBERT model)MraConfigconfiguration class:MraForMaskedLM(MRA model)MvpConfigconfiguration class:MvpForConditionalGeneration(MVP model)NezhaConfigconfiguration class:NezhaForMaskedLM(Nezha model)NystromformerConfigconfiguration class:NystromformerForMaskedLM(Nyströmformer model)PerceiverConfigconfiguration class:PerceiverForMaskedLM(Perceiver model)QDQBertConfigconfiguration class:QDQBertForMaskedLM(QDQBert model)ReformerConfigconfiguration class:ReformerForMaskedLM(Reformer model)RemBertConfigconfiguration class:RemBertForMaskedLM(RemBERT model)RoCBertConfigconfiguration class:RoCBertForMaskedLM(RoCBert model)RoFormerConfigconfiguration class:RoFormerForMaskedLM(RoFormer model)RobertaConfigconfiguration class:RobertaForMaskedLM(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:RobertaPreLayerNormForMaskedLM(RoBERTa-PreLayerNorm model)SqueezeBertConfigconfiguration class:SqueezeBertForMaskedLM(SqueezeBERT model)TapasConfigconfiguration class:TapasForMaskedLM(TAPAS model)Wav2Vec2Configconfiguration class:Wav2Vec2ForMaskedLM(Wav2Vec2 model)XLMConfigconfiguration class:XLMWithLMHeadModel(XLM model)XLMRobertaConfigconfiguration class:XLMRobertaForMaskedLM(XLM-RoBERTa model)XLMRobertaXLConfigconfiguration class:XLMRobertaXLForMaskedLM(XLM-RoBERTa-XL model)XmodConfigconfiguration class:XmodForMaskedLM(X-MOD model)YosoConfigconfiguration class:YosoForMaskedLM(YOSO model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a masked language modeling head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a masked language modeling head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — AlbertForMaskedLM (ALBERT model)
- bart — BartForConditionalGeneration (BART model)
- bert — BertForMaskedLM (BERT model)
- big_bird — BigBirdForMaskedLM (BigBird model)
- camembert — CamembertForMaskedLM (CamemBERT model)
- convbert — ConvBertForMaskedLM (ConvBERT model)
- data2vec-text — Data2VecTextForMaskedLM (Data2VecText model)
- deberta — DebertaForMaskedLM (DeBERTa model)
- deberta-v2 — DebertaV2ForMaskedLM (DeBERTa-v2 model)
- distilbert —
DistilBertForMaskedLM(DistilBERT model) - electra —
ElectraForMaskedLM(ELECTRA model) - ernie —
ErnieForMaskedLM(ERNIE model) - esm —
EsmForMaskedLM(ESM model) - flaubert —
FlaubertWithLMHeadModel(FlauBERT model) - fnet —
FNetForMaskedLM(FNet model) - funnel —
FunnelForMaskedLM(Funnel Transformer model) - ibert —
IBertForMaskedLM(I-BERT model) - layoutlm —
LayoutLMForMaskedLM(LayoutLM model) - longformer —
LongformerForMaskedLM(Longformer model) - luke —
LukeForMaskedLM(LUKE model) - mbart —
MBartForConditionalGeneration(mBART model) - mega —
MegaForMaskedLM(MEGA model) - megatron-bert —
MegatronBertForMaskedLM(Megatron-BERT model) - mobilebert —
MobileBertForMaskedLM(MobileBERT model) - mpnet —
MPNetForMaskedLM(MPNet model) - mra —
MraForMaskedLM(MRA model) - mvp —
MvpForConditionalGeneration(MVP model) - nezha —
NezhaForMaskedLM(Nezha model) - nystromformer —
NystromformerForMaskedLM(Nyströmformer model) - perceiver —
PerceiverForMaskedLM(Perceiver model) - qdqbert —
QDQBertForMaskedLM(QDQBert model) - reformer —
ReformerForMaskedLM(Reformer model) - rembert —
RemBertForMaskedLM(RemBERT model) - roberta —
RobertaForMaskedLM(RoBERTa model) - roberta-prelayernorm —
RobertaPreLayerNormForMaskedLM(RoBERTa-PreLayerNorm model) - roc_bert —
RoCBertForMaskedLM(RoCBert model) - roformer —
RoFormerForMaskedLM(RoFormer model) - squeezebert —
SqueezeBertForMaskedLM(SqueezeBERT model) - tapas —
TapasForMaskedLM(TAPAS model) - wav2vec2 —
Wav2Vec2ForMaskedLM(Wav2Vec2 model) - xlm —
XLMWithLMHeadModel(XLM model) - xlm-roberta —
XLMRobertaForMaskedLM(XLM-RoBERTa model) - xlm-roberta-xl —
XLMRobertaXLForMaskedLM(XLM-RoBERTa-XL model) - xmod —
XmodForMaskedLM(X-MOD model) - yoso —
YosoForMaskedLM(YOSO model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForMaskedLM
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForMaskedLM.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForMaskedLM.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForMaskedLM.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )TFAutoModelForMaskedLM
This is a generic model class that will be instantiated as one of the model classes of the library (with a masked language modeling head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: TFAlbertForMaskedLM (ALBERT model)
- BertConfig configuration class: TFBertForMaskedLM (BERT model)
- CamembertConfig configuration class: TFCamembertForMaskedLM (CamemBERT model)
- ConvBertConfig configuration class: TFConvBertForMaskedLM (ConvBERT model)
- DebertaConfig configuration class: TFDebertaForMaskedLM (DeBERTa model)
- DebertaV2Config configuration class: TFDebertaV2ForMaskedLM (DeBERTa-v2 model)
DistilBertConfigconfiguration class:TFDistilBertForMaskedLM(DistilBERT model)ElectraConfigconfiguration class:TFElectraForMaskedLM(ELECTRA model)EsmConfigconfiguration class:TFEsmForMaskedLM(ESM model)FlaubertConfigconfiguration class:TFFlaubertWithLMHeadModel(FlauBERT model)FunnelConfigconfiguration class:TFFunnelForMaskedLM(Funnel Transformer model)LayoutLMConfigconfiguration class:TFLayoutLMForMaskedLM(LayoutLM model)LongformerConfigconfiguration class:TFLongformerForMaskedLM(Longformer model)MPNetConfigconfiguration class:TFMPNetForMaskedLM(MPNet model)MobileBertConfigconfiguration class:TFMobileBertForMaskedLM(MobileBERT model)RemBertConfigconfiguration class:TFRemBertForMaskedLM(RemBERT model)RoFormerConfigconfiguration class:TFRoFormerForMaskedLM(RoFormer model)RobertaConfigconfiguration class:TFRobertaForMaskedLM(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:TFRobertaPreLayerNormForMaskedLM(RoBERTa-PreLayerNorm model)TapasConfigconfiguration class:TFTapasForMaskedLM(TAPAS model)XLMConfigconfiguration class:TFXLMWithLMHeadModel(XLM model)XLMRobertaConfigconfiguration class:TFXLMRobertaForMaskedLM(XLM-RoBERTa model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a masked language modeling head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a masked language modeling head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — TFAlbertForMaskedLM (ALBERT model)
- bert — TFBertForMaskedLM (BERT model)
- camembert — TFCamembertForMaskedLM (CamemBERT model)
- convbert — TFConvBertForMaskedLM (ConvBERT model)
- deberta — TFDebertaForMaskedLM (DeBERTa model)
- deberta-v2 — TFDebertaV2ForMaskedLM (DeBERTa-v2 model)
- distilbert —
TFDistilBertForMaskedLM(DistilBERT model) - electra —
TFElectraForMaskedLM(ELECTRA model) - esm —
TFEsmForMaskedLM(ESM model) - flaubert —
TFFlaubertWithLMHeadModel(FlauBERT model) - funnel —
TFFunnelForMaskedLM(Funnel Transformer model) - layoutlm —
TFLayoutLMForMaskedLM(LayoutLM model) - longformer —
TFLongformerForMaskedLM(Longformer model) - mobilebert —
TFMobileBertForMaskedLM(MobileBERT model) - mpnet —
TFMPNetForMaskedLM(MPNet model) - rembert —
TFRemBertForMaskedLM(RemBERT model) - roberta —
TFRobertaForMaskedLM(RoBERTa model) - roberta-prelayernorm —
TFRobertaPreLayerNormForMaskedLM(RoBERTa-PreLayerNorm model) - roformer —
TFRoFormerForMaskedLM(RoFormer model) - tapas —
TFTapasForMaskedLM(TAPAS model) - xlm —
TFXLMWithLMHeadModel(XLM model) - xlm-roberta —
TFXLMRobertaForMaskedLM(XLM-RoBERTa model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForMaskedLM
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForMaskedLM.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = TFAutoModelForMaskedLM.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = TFAutoModelForMaskedLM.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )FlaxAutoModelForMaskedLM
This is a generic model class that will be instantiated as one of the model classes of the library (with a masked language modeling head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: FlaxAlbertForMaskedLM (ALBERT model)
- BartConfig configuration class: FlaxBartForConditionalGeneration (BART model)
- BertConfig configuration class: FlaxBertForMaskedLM (BERT model)
- BigBirdConfig configuration class: FlaxBigBirdForMaskedLM (BigBird model)
DistilBertConfigconfiguration class:FlaxDistilBertForMaskedLM(DistilBERT model)ElectraConfigconfiguration class:FlaxElectraForMaskedLM(ELECTRA model)MBartConfigconfiguration class:FlaxMBartForConditionalGeneration(mBART model)RoFormerConfigconfiguration class:FlaxRoFormerForMaskedLM(RoFormer model)RobertaConfigconfiguration class:FlaxRobertaForMaskedLM(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:FlaxRobertaPreLayerNormForMaskedLM(RoBERTa-PreLayerNorm model)XLMRobertaConfigconfiguration class:FlaxXLMRobertaForMaskedLM(XLM-RoBERTa model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a masked language modeling head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a masked language modeling head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — FlaxAlbertForMaskedLM (ALBERT model)
- bart — FlaxBartForConditionalGeneration (BART model)
- bert — FlaxBertForMaskedLM (BERT model)
- big_bird — FlaxBigBirdForMaskedLM (BigBird model)
- distilbert —
FlaxDistilBertForMaskedLM(DistilBERT model) - electra —
FlaxElectraForMaskedLM(ELECTRA model) - mbart —
FlaxMBartForConditionalGeneration(mBART model) - roberta —
FlaxRobertaForMaskedLM(RoBERTa model) - roberta-prelayernorm —
FlaxRobertaPreLayerNormForMaskedLM(RoBERTa-PreLayerNorm model) - roformer —
FlaxRoFormerForMaskedLM(RoFormer model) - xlm-roberta —
FlaxXLMRobertaForMaskedLM(XLM-RoBERTa model)
Examples:
>>> from transformers import AutoConfig, FlaxAutoModelForMaskedLM
>>> # Download model and configuration from huggingface.co and cache.
>>> model = FlaxAutoModelForMaskedLM.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = FlaxAutoModelForMaskedLM.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = FlaxAutoModelForMaskedLM.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )AutoModelForMaskGeneration
TFAutoModelForMaskGeneration
AutoModelForSeq2SeqLM
This is a generic model class that will be instantiated as one of the model classes of the library (with a sequence-to-sequence language modeling head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- BartConfig configuration class: BartForConditionalGeneration (BART model)
- BigBirdPegasusConfig configuration class: BigBirdPegasusForConditionalGeneration (BigBird-Pegasus model)
- BlenderbotConfig configuration class: BlenderbotForConditionalGeneration (Blenderbot model)
- BlenderbotSmallConfig configuration class: BlenderbotSmallForConditionalGeneration (BlenderbotSmall model)
EncoderDecoderConfigconfiguration class:EncoderDecoderModel(Encoder decoder model)FSMTConfigconfiguration class:FSMTForConditionalGeneration(FairSeq Machine-Translation model)GPTSanJapaneseConfigconfiguration class:GPTSanJapaneseForConditionalGeneration(GPTSAN-japanese model)LEDConfigconfiguration class:LEDForConditionalGeneration(LED model)LongT5Configconfiguration class:LongT5ForConditionalGeneration(LongT5 model)M2M100Configconfiguration class:M2M100ForConditionalGeneration(M2M100 model)MBartConfigconfiguration class:MBartForConditionalGeneration(mBART model)MT5Configconfiguration class:MT5ForConditionalGeneration(MT5 model)MarianConfigconfiguration class:MarianMTModel(Marian model)MvpConfigconfiguration class:MvpForConditionalGeneration(MVP model)NllbMoeConfigconfiguration class:NllbMoeForConditionalGeneration(NLLB-MOE model)PLBartConfigconfiguration class:PLBartForConditionalGeneration(PLBart model)PegasusConfigconfiguration class:PegasusForConditionalGeneration(Pegasus model)PegasusXConfigconfiguration class:PegasusXForConditionalGeneration(PEGASUS-X model)ProphetNetConfigconfiguration class:ProphetNetForConditionalGeneration(ProphetNet model)SeamlessM4TConfigconfiguration class:SeamlessM4TForTextToText(SeamlessM4T model)SeamlessM4Tv2Configconfiguration class:SeamlessM4Tv2ForTextToText(SeamlessM4Tv2 model)SwitchTransformersConfigconfiguration class:SwitchTransformersForConditionalGeneration(SwitchTransformers model)T5Configconfiguration class:T5ForConditionalGeneration(T5 model)UMT5Configconfiguration class:UMT5ForConditionalGeneration(UMT5 model)XLMProphetNetConfigconfiguration class:XLMProphetNetForConditionalGeneration(XLM-ProphetNet model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a sequence-to-sequence language modeling head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a sequence-to-sequence language modeling head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- bart — BartForConditionalGeneration (BART model)
- bigbird_pegasus — BigBirdPegasusForConditionalGeneration (BigBird-Pegasus model)
- blenderbot — BlenderbotForConditionalGeneration (Blenderbot model)
- blenderbot-small — BlenderbotSmallForConditionalGeneration (BlenderbotSmall model)
- encoder-decoder —
EncoderDecoderModel(Encoder decoder model) - fsmt —
FSMTForConditionalGeneration(FairSeq Machine-Translation model) - gptsan-japanese —
GPTSanJapaneseForConditionalGeneration(GPTSAN-japanese model) - led —
LEDForConditionalGeneration(LED model) - longt5 —
LongT5ForConditionalGeneration(LongT5 model) - m2m_100 —
M2M100ForConditionalGeneration(M2M100 model) - marian —
MarianMTModel(Marian model) - mbart —
MBartForConditionalGeneration(mBART model) - mt5 —
MT5ForConditionalGeneration(MT5 model) - mvp —
MvpForConditionalGeneration(MVP model) - nllb-moe —
NllbMoeForConditionalGeneration(NLLB-MOE model) - pegasus —
PegasusForConditionalGeneration(Pegasus model) - pegasus_x —
PegasusXForConditionalGeneration(PEGASUS-X model) - plbart —
PLBartForConditionalGeneration(PLBart model) - prophetnet —
ProphetNetForConditionalGeneration(ProphetNet model) - seamless_m4t —
SeamlessM4TForTextToText(SeamlessM4T model) - seamless_m4t_v2 —
SeamlessM4Tv2ForTextToText(SeamlessM4Tv2 model) - switch_transformers —
SwitchTransformersForConditionalGeneration(SwitchTransformers model) - t5 —
T5ForConditionalGeneration(T5 model) - umt5 —
UMT5ForConditionalGeneration(UMT5 model) - xlm-prophetnet —
XLMProphetNetForConditionalGeneration(XLM-ProphetNet model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForSeq2SeqLM
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
>>> # Update configuration during loading
>>> model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/t5_tf_model_config.json")
>>> model = AutoModelForSeq2SeqLM.from_pretrained(
... "./tf_model/t5_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )TFAutoModelForSeq2SeqLM
This is a generic model class that will be instantiated as one of the model classes of the library (with a sequence-to-sequence language modeling head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- BartConfig configuration class: TFBartForConditionalGeneration (BART model)
- BlenderbotConfig configuration class: TFBlenderbotForConditionalGeneration (Blenderbot model)
- BlenderbotSmallConfig configuration class: TFBlenderbotSmallForConditionalGeneration (BlenderbotSmall model)
EncoderDecoderConfigconfiguration class:TFEncoderDecoderModel(Encoder decoder model)LEDConfigconfiguration class:TFLEDForConditionalGeneration(LED model)MBartConfigconfiguration class:TFMBartForConditionalGeneration(mBART model)MT5Configconfiguration class:TFMT5ForConditionalGeneration(MT5 model)MarianConfigconfiguration class:TFMarianMTModel(Marian model)PegasusConfigconfiguration class:TFPegasusForConditionalGeneration(Pegasus model)T5Configconfiguration class:TFT5ForConditionalGeneration(T5 model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a sequence-to-sequence language modeling head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a sequence-to-sequence language modeling head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- bart — TFBartForConditionalGeneration (BART model)
- blenderbot — TFBlenderbotForConditionalGeneration (Blenderbot model)
- blenderbot-small — TFBlenderbotSmallForConditionalGeneration (BlenderbotSmall model)
- encoder-decoder —
TFEncoderDecoderModel(Encoder decoder model) - led —
TFLEDForConditionalGeneration(LED model) - marian —
TFMarianMTModel(Marian model) - mbart —
TFMBartForConditionalGeneration(mBART model) - mt5 —
TFMT5ForConditionalGeneration(MT5 model) - pegasus —
TFPegasusForConditionalGeneration(Pegasus model) - t5 —
TFT5ForConditionalGeneration(T5 model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForSeq2SeqLM
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
>>> # Update configuration during loading
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/t5_pt_model_config.json")
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained(
... "./pt_model/t5_pytorch_model.bin", from_pt=True, config=config
... )FlaxAutoModelForSeq2SeqLM
This is a generic model class that will be instantiated as one of the model classes of the library (with a sequence-to-sequence language modeling head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- BartConfig configuration class: FlaxBartForConditionalGeneration (BART model)
- BlenderbotConfig configuration class: FlaxBlenderbotForConditionalGeneration (Blenderbot model)
- BlenderbotSmallConfig configuration class: FlaxBlenderbotSmallForConditionalGeneration (BlenderbotSmall model)
EncoderDecoderConfigconfiguration class:FlaxEncoderDecoderModel(Encoder decoder model)LongT5Configconfiguration class:FlaxLongT5ForConditionalGeneration(LongT5 model)MBartConfigconfiguration class:FlaxMBartForConditionalGeneration(mBART model)MT5Configconfiguration class:FlaxMT5ForConditionalGeneration(MT5 model)MarianConfigconfiguration class:FlaxMarianMTModel(Marian model)PegasusConfigconfiguration class:FlaxPegasusForConditionalGeneration(Pegasus model)T5Configconfiguration class:FlaxT5ForConditionalGeneration(T5 model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a sequence-to-sequence language modeling head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a sequence-to-sequence language modeling head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- bart — FlaxBartForConditionalGeneration (BART model)
- blenderbot — FlaxBlenderbotForConditionalGeneration (Blenderbot model)
- blenderbot-small — FlaxBlenderbotSmallForConditionalGeneration (BlenderbotSmall model)
- encoder-decoder —
FlaxEncoderDecoderModel(Encoder decoder model) - longt5 —
FlaxLongT5ForConditionalGeneration(LongT5 model) - marian —
FlaxMarianMTModel(Marian model) - mbart —
FlaxMBartForConditionalGeneration(mBART model) - mt5 —
FlaxMT5ForConditionalGeneration(MT5 model) - pegasus —
FlaxPegasusForConditionalGeneration(Pegasus model) - t5 —
FlaxT5ForConditionalGeneration(T5 model)
Examples:
>>> from transformers import AutoConfig, FlaxAutoModelForSeq2SeqLM
>>> # Download model and configuration from huggingface.co and cache.
>>> model = FlaxAutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
>>> # Update configuration during loading
>>> model = FlaxAutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/t5_pt_model_config.json")
>>> model = FlaxAutoModelForSeq2SeqLM.from_pretrained(
... "./pt_model/t5_pytorch_model.bin", from_pt=True, config=config
... )AutoModelForSequenceClassification
This is a generic model class that will be instantiated as one of the model classes of the library (with a sequence classification head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: AlbertForSequenceClassification (ALBERT model)
- BartConfig configuration class: BartForSequenceClassification (BART model)
- BertConfig configuration class: BertForSequenceClassification (BERT model)
- BigBirdConfig configuration class: BigBirdForSequenceClassification (BigBird model)
- BigBirdPegasusConfig configuration class: BigBirdPegasusForSequenceClassification (BigBird-Pegasus model)
- BioGptConfig configuration class: BioGptForSequenceClassification (BioGpt model)
- BloomConfig configuration class: BloomForSequenceClassification (BLOOM model)
- CTRLConfig configuration class: CTRLForSequenceClassification (CTRL model)
- CamembertConfig configuration class: CamembertForSequenceClassification (CamemBERT model)
- CanineConfig configuration class: CanineForSequenceClassification (CANINE model)
- ConvBertConfig configuration class: ConvBertForSequenceClassification (ConvBERT model)
- Data2VecTextConfig configuration class: Data2VecTextForSequenceClassification (Data2VecText model)
- DebertaConfig configuration class: DebertaForSequenceClassification (DeBERTa model)
- DebertaV2Config configuration class: DebertaV2ForSequenceClassification (DeBERTa-v2 model)
DistilBertConfigconfiguration class:DistilBertForSequenceClassification(DistilBERT model)ElectraConfigconfiguration class:ElectraForSequenceClassification(ELECTRA model)ErnieConfigconfiguration class:ErnieForSequenceClassification(ERNIE model)ErnieMConfigconfiguration class:ErnieMForSequenceClassification(ErnieM model)EsmConfigconfiguration class:EsmForSequenceClassification(ESM model)FNetConfigconfiguration class:FNetForSequenceClassification(FNet model)FalconConfigconfiguration class:FalconForSequenceClassification(Falcon model)FlaubertConfigconfiguration class:FlaubertForSequenceClassification(FlauBERT model)FunnelConfigconfiguration class:FunnelForSequenceClassification(Funnel Transformer model)GPT2Configconfiguration class:GPT2ForSequenceClassification(OpenAI GPT-2 model)GPTBigCodeConfigconfiguration class:GPTBigCodeForSequenceClassification(GPTBigCode model)GPTJConfigconfiguration class:GPTJForSequenceClassification(GPT-J model)GPTNeoConfigconfiguration class:GPTNeoForSequenceClassification(GPT Neo model)GPTNeoXConfigconfiguration class:GPTNeoXForSequenceClassification(GPT NeoX model)Gemma2Configconfiguration class:Gemma2ForSequenceClassification(Gemma2 model)GemmaConfigconfiguration class:GemmaForSequenceClassification(Gemma model)IBertConfigconfiguration class:IBertForSequenceClassification(I-BERT model)JambaConfigconfiguration class:JambaForSequenceClassification(Jamba model)JetMoeConfigconfiguration class:JetMoeForSequenceClassification(JetMoe model)LEDConfigconfiguration class:LEDForSequenceClassification(LED model)LayoutLMConfigconfiguration class:LayoutLMForSequenceClassification(LayoutLM model)LayoutLMv2Configconfiguration class:LayoutLMv2ForSequenceClassification(LayoutLMv2 model)LayoutLMv3Configconfiguration class:LayoutLMv3ForSequenceClassification(LayoutLMv3 model)LiltConfigconfiguration class:LiltForSequenceClassification(LiLT model)LlamaConfigconfiguration class:LlamaForSequenceClassification(LLaMA model)LongformerConfigconfiguration class:LongformerForSequenceClassification(Longformer model)LukeConfigconfiguration class:LukeForSequenceClassification(LUKE model)MBartConfigconfiguration class:MBartForSequenceClassification(mBART model)MPNetConfigconfiguration class:MPNetForSequenceClassification(MPNet model)MT5Configconfiguration class:MT5ForSequenceClassification(MT5 model)MarkupLMConfigconfiguration class:MarkupLMForSequenceClassification(MarkupLM model)MegaConfigconfiguration class:MegaForSequenceClassification(MEGA model)MegatronBertConfigconfiguration class:MegatronBertForSequenceClassification(Megatron-BERT model)MistralConfigconfiguration class:MistralForSequenceClassification(Mistral model)MixtralConfigconfiguration class:MixtralForSequenceClassification(Mixtral model)MobileBertConfigconfiguration class:MobileBertForSequenceClassification(MobileBERT model)MptConfigconfiguration class:MptForSequenceClassification(MPT model)MraConfigconfiguration class:MraForSequenceClassification(MRA model)MvpConfigconfiguration class:MvpForSequenceClassification(MVP model)NezhaConfigconfiguration class:NezhaForSequenceClassification(Nezha model)NystromformerConfigconfiguration class:NystromformerForSequenceClassification(Nyströmformer model)OPTConfigconfiguration class:OPTForSequenceClassification(OPT model)OpenAIGPTConfigconfiguration class:OpenAIGPTForSequenceClassification(OpenAI GPT model)OpenLlamaConfigconfiguration class:OpenLlamaForSequenceClassification(OpenLlama model)PLBartConfigconfiguration class:PLBartForSequenceClassification(PLBart model)PerceiverConfigconfiguration class:PerceiverForSequenceClassification(Perceiver model)PersimmonConfigconfiguration class:PersimmonForSequenceClassification(Persimmon model)Phi3Configconfiguration class:Phi3ForSequenceClassification(Phi3 model)PhiConfigconfiguration class:PhiForSequenceClassification(Phi model)QDQBertConfigconfiguration class:QDQBertForSequenceClassification(QDQBert model)Qwen2Configconfiguration class:Qwen2ForSequenceClassification(Qwen2 model)Qwen2MoeConfigconfiguration class:Qwen2MoeForSequenceClassification(Qwen2MoE model)ReformerConfigconfiguration class:ReformerForSequenceClassification(Reformer model)RemBertConfigconfiguration class:RemBertForSequenceClassification(RemBERT model)RoCBertConfigconfiguration class:RoCBertForSequenceClassification(RoCBert model)RoFormerConfigconfiguration class:RoFormerForSequenceClassification(RoFormer model)RobertaConfigconfiguration class:RobertaForSequenceClassification(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:RobertaPreLayerNormForSequenceClassification(RoBERTa-PreLayerNorm model)SqueezeBertConfigconfiguration class:SqueezeBertForSequenceClassification(SqueezeBERT model)StableLmConfigconfiguration class:StableLmForSequenceClassification(StableLm model)Starcoder2Configconfiguration class:Starcoder2ForSequenceClassification(Starcoder2 model)T5Configconfiguration class:T5ForSequenceClassification(T5 model)TapasConfigconfiguration class:TapasForSequenceClassification(TAPAS model)TransfoXLConfigconfiguration class:TransfoXLForSequenceClassification(Transformer-XL model)UMT5Configconfiguration class:UMT5ForSequenceClassification(UMT5 model)XLMConfigconfiguration class:XLMForSequenceClassification(XLM model)XLMRobertaConfigconfiguration class:XLMRobertaForSequenceClassification(XLM-RoBERTa model)XLMRobertaXLConfigconfiguration class:XLMRobertaXLForSequenceClassification(XLM-RoBERTa-XL model)XLNetConfigconfiguration class:XLNetForSequenceClassification(XLNet model)XmodConfigconfiguration class:XmodForSequenceClassification(X-MOD model)YosoConfigconfiguration class:YosoForSequenceClassification(YOSO model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a sequence classification head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a sequence classification head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — AlbertForSequenceClassification (ALBERT model)
- bart — BartForSequenceClassification (BART model)
- bert — BertForSequenceClassification (BERT model)
- big_bird — BigBirdForSequenceClassification (BigBird model)
- bigbird_pegasus — BigBirdPegasusForSequenceClassification (BigBird-Pegasus model)
- biogpt — BioGptForSequenceClassification (BioGpt model)
- bloom — BloomForSequenceClassification (BLOOM model)
- camembert — CamembertForSequenceClassification (CamemBERT model)
- canine — CanineForSequenceClassification (CANINE model)
- code_llama —
LlamaForSequenceClassification(CodeLlama model) - convbert — ConvBertForSequenceClassification (ConvBERT model)
- ctrl — CTRLForSequenceClassification (CTRL model)
- data2vec-text — Data2VecTextForSequenceClassification (Data2VecText model)
- deberta — DebertaForSequenceClassification (DeBERTa model)
- deberta-v2 — DebertaV2ForSequenceClassification (DeBERTa-v2 model)
- distilbert —
DistilBertForSequenceClassification(DistilBERT model) - electra —
ElectraForSequenceClassification(ELECTRA model) - ernie —
ErnieForSequenceClassification(ERNIE model) - ernie_m —
ErnieMForSequenceClassification(ErnieM model) - esm —
EsmForSequenceClassification(ESM model) - falcon —
FalconForSequenceClassification(Falcon model) - flaubert —
FlaubertForSequenceClassification(FlauBERT model) - fnet —
FNetForSequenceClassification(FNet model) - funnel —
FunnelForSequenceClassification(Funnel Transformer model) - gemma —
GemmaForSequenceClassification(Gemma model) - gemma2 —
Gemma2ForSequenceClassification(Gemma2 model) - gpt-sw3 —
GPT2ForSequenceClassification(GPT-Sw3 model) - gpt2 —
GPT2ForSequenceClassification(OpenAI GPT-2 model) - gpt_bigcode —
GPTBigCodeForSequenceClassification(GPTBigCode model) - gpt_neo —
GPTNeoForSequenceClassification(GPT Neo model) - gpt_neox —
GPTNeoXForSequenceClassification(GPT NeoX model) - gptj —
GPTJForSequenceClassification(GPT-J model) - ibert —
IBertForSequenceClassification(I-BERT model) - jamba —
JambaForSequenceClassification(Jamba model) - jetmoe —
JetMoeForSequenceClassification(JetMoe model) - layoutlm —
LayoutLMForSequenceClassification(LayoutLM model) - layoutlmv2 —
LayoutLMv2ForSequenceClassification(LayoutLMv2 model) - layoutlmv3 —
LayoutLMv3ForSequenceClassification(LayoutLMv3 model) - led —
LEDForSequenceClassification(LED model) - lilt —
LiltForSequenceClassification(LiLT model) - llama —
LlamaForSequenceClassification(LLaMA model) - longformer —
LongformerForSequenceClassification(Longformer model) - luke —
LukeForSequenceClassification(LUKE model) - markuplm —
MarkupLMForSequenceClassification(MarkupLM model) - mbart —
MBartForSequenceClassification(mBART model) - mega —
MegaForSequenceClassification(MEGA model) - megatron-bert —
MegatronBertForSequenceClassification(Megatron-BERT model) - mistral —
MistralForSequenceClassification(Mistral model) - mixtral —
MixtralForSequenceClassification(Mixtral model) - mobilebert —
MobileBertForSequenceClassification(MobileBERT model) - mpnet —
MPNetForSequenceClassification(MPNet model) - mpt —
MptForSequenceClassification(MPT model) - mra —
MraForSequenceClassification(MRA model) - mt5 —
MT5ForSequenceClassification(MT5 model) - mvp —
MvpForSequenceClassification(MVP model) - nezha —
NezhaForSequenceClassification(Nezha model) - nystromformer —
NystromformerForSequenceClassification(Nyströmformer model) - open-llama —
OpenLlamaForSequenceClassification(OpenLlama model) - openai-gpt —
OpenAIGPTForSequenceClassification(OpenAI GPT model) - opt —
OPTForSequenceClassification(OPT model) - perceiver —
PerceiverForSequenceClassification(Perceiver model) - persimmon —
PersimmonForSequenceClassification(Persimmon model) - phi —
PhiForSequenceClassification(Phi model) - phi3 —
Phi3ForSequenceClassification(Phi3 model) - plbart —
PLBartForSequenceClassification(PLBart model) - qdqbert —
QDQBertForSequenceClassification(QDQBert model) - qwen2 —
Qwen2ForSequenceClassification(Qwen2 model) - qwen2_moe —
Qwen2MoeForSequenceClassification(Qwen2MoE model) - reformer —
ReformerForSequenceClassification(Reformer model) - rembert —
RemBertForSequenceClassification(RemBERT model) - roberta —
RobertaForSequenceClassification(RoBERTa model) - roberta-prelayernorm —
RobertaPreLayerNormForSequenceClassification(RoBERTa-PreLayerNorm model) - roc_bert —
RoCBertForSequenceClassification(RoCBert model) - roformer —
RoFormerForSequenceClassification(RoFormer model) - squeezebert —
SqueezeBertForSequenceClassification(SqueezeBERT model) - stablelm —
StableLmForSequenceClassification(StableLm model) - starcoder2 —
Starcoder2ForSequenceClassification(Starcoder2 model) - t5 —
T5ForSequenceClassification(T5 model) - tapas —
TapasForSequenceClassification(TAPAS model) - transfo-xl —
TransfoXLForSequenceClassification(Transformer-XL model) - umt5 —
UMT5ForSequenceClassification(UMT5 model) - xlm —
XLMForSequenceClassification(XLM model) - xlm-roberta —
XLMRobertaForSequenceClassification(XLM-RoBERTa model) - xlm-roberta-xl —
XLMRobertaXLForSequenceClassification(XLM-RoBERTa-XL model) - xlnet —
XLNetForSequenceClassification(XLNet model) - xmod —
XmodForSequenceClassification(X-MOD model) - yoso —
YosoForSequenceClassification(YOSO model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForSequenceClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForSequenceClassification.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )TFAutoModelForSequenceClassification
This is a generic model class that will be instantiated as one of the model classes of the library (with a sequence classification head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: TFAlbertForSequenceClassification (ALBERT model)
- BartConfig configuration class: TFBartForSequenceClassification (BART model)
- BertConfig configuration class: TFBertForSequenceClassification (BERT model)
- CTRLConfig configuration class: TFCTRLForSequenceClassification (CTRL model)
- CamembertConfig configuration class: TFCamembertForSequenceClassification (CamemBERT model)
- ConvBertConfig configuration class: TFConvBertForSequenceClassification (ConvBERT model)
- DebertaConfig configuration class: TFDebertaForSequenceClassification (DeBERTa model)
- DebertaV2Config configuration class: TFDebertaV2ForSequenceClassification (DeBERTa-v2 model)
DistilBertConfigconfiguration class:TFDistilBertForSequenceClassification(DistilBERT model)ElectraConfigconfiguration class:TFElectraForSequenceClassification(ELECTRA model)EsmConfigconfiguration class:TFEsmForSequenceClassification(ESM model)FlaubertConfigconfiguration class:TFFlaubertForSequenceClassification(FlauBERT model)FunnelConfigconfiguration class:TFFunnelForSequenceClassification(Funnel Transformer model)GPT2Configconfiguration class:TFGPT2ForSequenceClassification(OpenAI GPT-2 model)GPTJConfigconfiguration class:TFGPTJForSequenceClassification(GPT-J model)LayoutLMConfigconfiguration class:TFLayoutLMForSequenceClassification(LayoutLM model)LayoutLMv3Configconfiguration class:TFLayoutLMv3ForSequenceClassification(LayoutLMv3 model)LongformerConfigconfiguration class:TFLongformerForSequenceClassification(Longformer model)MPNetConfigconfiguration class:TFMPNetForSequenceClassification(MPNet model)MistralConfigconfiguration class:TFMistralForSequenceClassification(Mistral model)MobileBertConfigconfiguration class:TFMobileBertForSequenceClassification(MobileBERT model)OpenAIGPTConfigconfiguration class:TFOpenAIGPTForSequenceClassification(OpenAI GPT model)RemBertConfigconfiguration class:TFRemBertForSequenceClassification(RemBERT model)RoFormerConfigconfiguration class:TFRoFormerForSequenceClassification(RoFormer model)RobertaConfigconfiguration class:TFRobertaForSequenceClassification(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:TFRobertaPreLayerNormForSequenceClassification(RoBERTa-PreLayerNorm model)TapasConfigconfiguration class:TFTapasForSequenceClassification(TAPAS model)TransfoXLConfigconfiguration class:TFTransfoXLForSequenceClassification(Transformer-XL model)XLMConfigconfiguration class:TFXLMForSequenceClassification(XLM model)XLMRobertaConfigconfiguration class:TFXLMRobertaForSequenceClassification(XLM-RoBERTa model)XLNetConfigconfiguration class:TFXLNetForSequenceClassification(XLNet model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a sequence classification head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a sequence classification head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — TFAlbertForSequenceClassification (ALBERT model)
- bart — TFBartForSequenceClassification (BART model)
- bert — TFBertForSequenceClassification (BERT model)
- camembert — TFCamembertForSequenceClassification (CamemBERT model)
- convbert — TFConvBertForSequenceClassification (ConvBERT model)
- ctrl — TFCTRLForSequenceClassification (CTRL model)
- deberta — TFDebertaForSequenceClassification (DeBERTa model)
- deberta-v2 — TFDebertaV2ForSequenceClassification (DeBERTa-v2 model)
- distilbert —
TFDistilBertForSequenceClassification(DistilBERT model) - electra —
TFElectraForSequenceClassification(ELECTRA model) - esm —
TFEsmForSequenceClassification(ESM model) - flaubert —
TFFlaubertForSequenceClassification(FlauBERT model) - funnel —
TFFunnelForSequenceClassification(Funnel Transformer model) - gpt-sw3 —
TFGPT2ForSequenceClassification(GPT-Sw3 model) - gpt2 —
TFGPT2ForSequenceClassification(OpenAI GPT-2 model) - gptj —
TFGPTJForSequenceClassification(GPT-J model) - layoutlm —
TFLayoutLMForSequenceClassification(LayoutLM model) - layoutlmv3 —
TFLayoutLMv3ForSequenceClassification(LayoutLMv3 model) - longformer —
TFLongformerForSequenceClassification(Longformer model) - mistral —
TFMistralForSequenceClassification(Mistral model) - mobilebert —
TFMobileBertForSequenceClassification(MobileBERT model) - mpnet —
TFMPNetForSequenceClassification(MPNet model) - openai-gpt —
TFOpenAIGPTForSequenceClassification(OpenAI GPT model) - rembert —
TFRemBertForSequenceClassification(RemBERT model) - roberta —
TFRobertaForSequenceClassification(RoBERTa model) - roberta-prelayernorm —
TFRobertaPreLayerNormForSequenceClassification(RoBERTa-PreLayerNorm model) - roformer —
TFRoFormerForSequenceClassification(RoFormer model) - tapas —
TFTapasForSequenceClassification(TAPAS model) - transfo-xl —
TFTransfoXLForSequenceClassification(Transformer-XL model) - xlm —
TFXLMForSequenceClassification(XLM model) - xlm-roberta —
TFXLMRobertaForSequenceClassification(XLM-RoBERTa model) - xlnet —
TFXLNetForSequenceClassification(XLNet model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForSequenceClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = TFAutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = TFAutoModelForSequenceClassification.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )FlaxAutoModelForSequenceClassification
This is a generic model class that will be instantiated as one of the model classes of the library (with a sequence classification head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: FlaxAlbertForSequenceClassification (ALBERT model)
- BartConfig configuration class: FlaxBartForSequenceClassification (BART model)
- BertConfig configuration class: FlaxBertForSequenceClassification (BERT model)
- BigBirdConfig configuration class: FlaxBigBirdForSequenceClassification (BigBird model)
DistilBertConfigconfiguration class:FlaxDistilBertForSequenceClassification(DistilBERT model)ElectraConfigconfiguration class:FlaxElectraForSequenceClassification(ELECTRA model)MBartConfigconfiguration class:FlaxMBartForSequenceClassification(mBART model)RoFormerConfigconfiguration class:FlaxRoFormerForSequenceClassification(RoFormer model)RobertaConfigconfiguration class:FlaxRobertaForSequenceClassification(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:FlaxRobertaPreLayerNormForSequenceClassification(RoBERTa-PreLayerNorm model)XLMRobertaConfigconfiguration class:FlaxXLMRobertaForSequenceClassification(XLM-RoBERTa model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a sequence classification head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a sequence classification head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — FlaxAlbertForSequenceClassification (ALBERT model)
- bart — FlaxBartForSequenceClassification (BART model)
- bert — FlaxBertForSequenceClassification (BERT model)
- big_bird — FlaxBigBirdForSequenceClassification (BigBird model)
- distilbert —
FlaxDistilBertForSequenceClassification(DistilBERT model) - electra —
FlaxElectraForSequenceClassification(ELECTRA model) - mbart —
FlaxMBartForSequenceClassification(mBART model) - roberta —
FlaxRobertaForSequenceClassification(RoBERTa model) - roberta-prelayernorm —
FlaxRobertaPreLayerNormForSequenceClassification(RoBERTa-PreLayerNorm model) - roformer —
FlaxRoFormerForSequenceClassification(RoFormer model) - xlm-roberta —
FlaxXLMRobertaForSequenceClassification(XLM-RoBERTa model)
Examples:
>>> from transformers import AutoConfig, FlaxAutoModelForSequenceClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = FlaxAutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = FlaxAutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = FlaxAutoModelForSequenceClassification.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )AutoModelForMultipleChoice
This is a generic model class that will be instantiated as one of the model classes of the library (with a multiple choice head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: AlbertForMultipleChoice (ALBERT model)
- BertConfig configuration class: BertForMultipleChoice (BERT model)
- BigBirdConfig configuration class: BigBirdForMultipleChoice (BigBird model)
- CamembertConfig configuration class: CamembertForMultipleChoice (CamemBERT model)
- CanineConfig configuration class: CanineForMultipleChoice (CANINE model)
- ConvBertConfig configuration class: ConvBertForMultipleChoice (ConvBERT model)
- Data2VecTextConfig configuration class: Data2VecTextForMultipleChoice (Data2VecText model)
- DebertaV2Config configuration class: DebertaV2ForMultipleChoice (DeBERTa-v2 model)
DistilBertConfigconfiguration class:DistilBertForMultipleChoice(DistilBERT model)ElectraConfigconfiguration class:ElectraForMultipleChoice(ELECTRA model)ErnieConfigconfiguration class:ErnieForMultipleChoice(ERNIE model)ErnieMConfigconfiguration class:ErnieMForMultipleChoice(ErnieM model)FNetConfigconfiguration class:FNetForMultipleChoice(FNet model)FlaubertConfigconfiguration class:FlaubertForMultipleChoice(FlauBERT model)FunnelConfigconfiguration class:FunnelForMultipleChoice(Funnel Transformer model)IBertConfigconfiguration class:IBertForMultipleChoice(I-BERT model)LongformerConfigconfiguration class:LongformerForMultipleChoice(Longformer model)LukeConfigconfiguration class:LukeForMultipleChoice(LUKE model)MPNetConfigconfiguration class:MPNetForMultipleChoice(MPNet model)MegaConfigconfiguration class:MegaForMultipleChoice(MEGA model)MegatronBertConfigconfiguration class:MegatronBertForMultipleChoice(Megatron-BERT model)MobileBertConfigconfiguration class:MobileBertForMultipleChoice(MobileBERT model)MraConfigconfiguration class:MraForMultipleChoice(MRA model)NezhaConfigconfiguration class:NezhaForMultipleChoice(Nezha model)NystromformerConfigconfiguration class:NystromformerForMultipleChoice(Nyströmformer model)QDQBertConfigconfiguration class:QDQBertForMultipleChoice(QDQBert model)RemBertConfigconfiguration class:RemBertForMultipleChoice(RemBERT model)RoCBertConfigconfiguration class:RoCBertForMultipleChoice(RoCBert model)RoFormerConfigconfiguration class:RoFormerForMultipleChoice(RoFormer model)RobertaConfigconfiguration class:RobertaForMultipleChoice(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:RobertaPreLayerNormForMultipleChoice(RoBERTa-PreLayerNorm model)SqueezeBertConfigconfiguration class:SqueezeBertForMultipleChoice(SqueezeBERT model)XLMConfigconfiguration class:XLMForMultipleChoice(XLM model)XLMRobertaConfigconfiguration class:XLMRobertaForMultipleChoice(XLM-RoBERTa model)XLMRobertaXLConfigconfiguration class:XLMRobertaXLForMultipleChoice(XLM-RoBERTa-XL model)XLNetConfigconfiguration class:XLNetForMultipleChoice(XLNet model)XmodConfigconfiguration class:XmodForMultipleChoice(X-MOD model)YosoConfigconfiguration class:YosoForMultipleChoice(YOSO model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a multiple choice head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a multiple choice head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — AlbertForMultipleChoice (ALBERT model)
- bert — BertForMultipleChoice (BERT model)
- big_bird — BigBirdForMultipleChoice (BigBird model)
- camembert — CamembertForMultipleChoice (CamemBERT model)
- canine — CanineForMultipleChoice (CANINE model)
- convbert — ConvBertForMultipleChoice (ConvBERT model)
- data2vec-text — Data2VecTextForMultipleChoice (Data2VecText model)
- deberta-v2 — DebertaV2ForMultipleChoice (DeBERTa-v2 model)
- distilbert —
DistilBertForMultipleChoice(DistilBERT model) - electra —
ElectraForMultipleChoice(ELECTRA model) - ernie —
ErnieForMultipleChoice(ERNIE model) - ernie_m —
ErnieMForMultipleChoice(ErnieM model) - flaubert —
FlaubertForMultipleChoice(FlauBERT model) - fnet —
FNetForMultipleChoice(FNet model) - funnel —
FunnelForMultipleChoice(Funnel Transformer model) - ibert —
IBertForMultipleChoice(I-BERT model) - longformer —
LongformerForMultipleChoice(Longformer model) - luke —
LukeForMultipleChoice(LUKE model) - mega —
MegaForMultipleChoice(MEGA model) - megatron-bert —
MegatronBertForMultipleChoice(Megatron-BERT model) - mobilebert —
MobileBertForMultipleChoice(MobileBERT model) - mpnet —
MPNetForMultipleChoice(MPNet model) - mra —
MraForMultipleChoice(MRA model) - nezha —
NezhaForMultipleChoice(Nezha model) - nystromformer —
NystromformerForMultipleChoice(Nyströmformer model) - qdqbert —
QDQBertForMultipleChoice(QDQBert model) - rembert —
RemBertForMultipleChoice(RemBERT model) - roberta —
RobertaForMultipleChoice(RoBERTa model) - roberta-prelayernorm —
RobertaPreLayerNormForMultipleChoice(RoBERTa-PreLayerNorm model) - roc_bert —
RoCBertForMultipleChoice(RoCBert model) - roformer —
RoFormerForMultipleChoice(RoFormer model) - squeezebert —
SqueezeBertForMultipleChoice(SqueezeBERT model) - xlm —
XLMForMultipleChoice(XLM model) - xlm-roberta —
XLMRobertaForMultipleChoice(XLM-RoBERTa model) - xlm-roberta-xl —
XLMRobertaXLForMultipleChoice(XLM-RoBERTa-XL model) - xlnet —
XLNetForMultipleChoice(XLNet model) - xmod —
XmodForMultipleChoice(X-MOD model) - yoso —
YosoForMultipleChoice(YOSO model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForMultipleChoice
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForMultipleChoice.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForMultipleChoice.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForMultipleChoice.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )TFAutoModelForMultipleChoice
This is a generic model class that will be instantiated as one of the model classes of the library (with a multiple choice head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: TFAlbertForMultipleChoice (ALBERT model)
- BertConfig configuration class: TFBertForMultipleChoice (BERT model)
- CamembertConfig configuration class: TFCamembertForMultipleChoice (CamemBERT model)
- ConvBertConfig configuration class: TFConvBertForMultipleChoice (ConvBERT model)
- DebertaV2Config configuration class: TFDebertaV2ForMultipleChoice (DeBERTa-v2 model)
DistilBertConfigconfiguration class:TFDistilBertForMultipleChoice(DistilBERT model)ElectraConfigconfiguration class:TFElectraForMultipleChoice(ELECTRA model)FlaubertConfigconfiguration class:TFFlaubertForMultipleChoice(FlauBERT model)FunnelConfigconfiguration class:TFFunnelForMultipleChoice(Funnel Transformer model)LongformerConfigconfiguration class:TFLongformerForMultipleChoice(Longformer model)MPNetConfigconfiguration class:TFMPNetForMultipleChoice(MPNet model)MobileBertConfigconfiguration class:TFMobileBertForMultipleChoice(MobileBERT model)RemBertConfigconfiguration class:TFRemBertForMultipleChoice(RemBERT model)RoFormerConfigconfiguration class:TFRoFormerForMultipleChoice(RoFormer model)RobertaConfigconfiguration class:TFRobertaForMultipleChoice(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:TFRobertaPreLayerNormForMultipleChoice(RoBERTa-PreLayerNorm model)XLMConfigconfiguration class:TFXLMForMultipleChoice(XLM model)XLMRobertaConfigconfiguration class:TFXLMRobertaForMultipleChoice(XLM-RoBERTa model)XLNetConfigconfiguration class:TFXLNetForMultipleChoice(XLNet model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a multiple choice head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a multiple choice head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — TFAlbertForMultipleChoice (ALBERT model)
- bert — TFBertForMultipleChoice (BERT model)
- camembert — TFCamembertForMultipleChoice (CamemBERT model)
- convbert — TFConvBertForMultipleChoice (ConvBERT model)
- deberta-v2 — TFDebertaV2ForMultipleChoice (DeBERTa-v2 model)
- distilbert —
TFDistilBertForMultipleChoice(DistilBERT model) - electra —
TFElectraForMultipleChoice(ELECTRA model) - flaubert —
TFFlaubertForMultipleChoice(FlauBERT model) - funnel —
TFFunnelForMultipleChoice(Funnel Transformer model) - longformer —
TFLongformerForMultipleChoice(Longformer model) - mobilebert —
TFMobileBertForMultipleChoice(MobileBERT model) - mpnet —
TFMPNetForMultipleChoice(MPNet model) - rembert —
TFRemBertForMultipleChoice(RemBERT model) - roberta —
TFRobertaForMultipleChoice(RoBERTa model) - roberta-prelayernorm —
TFRobertaPreLayerNormForMultipleChoice(RoBERTa-PreLayerNorm model) - roformer —
TFRoFormerForMultipleChoice(RoFormer model) - xlm —
TFXLMForMultipleChoice(XLM model) - xlm-roberta —
TFXLMRobertaForMultipleChoice(XLM-RoBERTa model) - xlnet —
TFXLNetForMultipleChoice(XLNet model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForMultipleChoice
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForMultipleChoice.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = TFAutoModelForMultipleChoice.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = TFAutoModelForMultipleChoice.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )FlaxAutoModelForMultipleChoice
This is a generic model class that will be instantiated as one of the model classes of the library (with a multiple choice head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: FlaxAlbertForMultipleChoice (ALBERT model)
- BertConfig configuration class: FlaxBertForMultipleChoice (BERT model)
- BigBirdConfig configuration class: FlaxBigBirdForMultipleChoice (BigBird model)
DistilBertConfigconfiguration class:FlaxDistilBertForMultipleChoice(DistilBERT model)ElectraConfigconfiguration class:FlaxElectraForMultipleChoice(ELECTRA model)RoFormerConfigconfiguration class:FlaxRoFormerForMultipleChoice(RoFormer model)RobertaConfigconfiguration class:FlaxRobertaForMultipleChoice(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:FlaxRobertaPreLayerNormForMultipleChoice(RoBERTa-PreLayerNorm model)XLMRobertaConfigconfiguration class:FlaxXLMRobertaForMultipleChoice(XLM-RoBERTa model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a multiple choice head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a multiple choice head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — FlaxAlbertForMultipleChoice (ALBERT model)
- bert — FlaxBertForMultipleChoice (BERT model)
- big_bird — FlaxBigBirdForMultipleChoice (BigBird model)
- distilbert —
FlaxDistilBertForMultipleChoice(DistilBERT model) - electra —
FlaxElectraForMultipleChoice(ELECTRA model) - roberta —
FlaxRobertaForMultipleChoice(RoBERTa model) - roberta-prelayernorm —
FlaxRobertaPreLayerNormForMultipleChoice(RoBERTa-PreLayerNorm model) - roformer —
FlaxRoFormerForMultipleChoice(RoFormer model) - xlm-roberta —
FlaxXLMRobertaForMultipleChoice(XLM-RoBERTa model)
Examples:
>>> from transformers import AutoConfig, FlaxAutoModelForMultipleChoice
>>> # Download model and configuration from huggingface.co and cache.
>>> model = FlaxAutoModelForMultipleChoice.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = FlaxAutoModelForMultipleChoice.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = FlaxAutoModelForMultipleChoice.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )AutoModelForNextSentencePrediction
This is a generic model class that will be instantiated as one of the model classes of the library (with a next sentence prediction head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- BertConfig configuration class: BertForNextSentencePrediction (BERT model)
ErnieConfigconfiguration class:ErnieForNextSentencePrediction(ERNIE model)FNetConfigconfiguration class:FNetForNextSentencePrediction(FNet model)MegatronBertConfigconfiguration class:MegatronBertForNextSentencePrediction(Megatron-BERT model)MobileBertConfigconfiguration class:MobileBertForNextSentencePrediction(MobileBERT model)NezhaConfigconfiguration class:NezhaForNextSentencePrediction(Nezha model)QDQBertConfigconfiguration class:QDQBertForNextSentencePrediction(QDQBert model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a next sentence prediction head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a next sentence prediction head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- bert — BertForNextSentencePrediction (BERT model)
- ernie —
ErnieForNextSentencePrediction(ERNIE model) - fnet —
FNetForNextSentencePrediction(FNet model) - megatron-bert —
MegatronBertForNextSentencePrediction(Megatron-BERT model) - mobilebert —
MobileBertForNextSentencePrediction(MobileBERT model) - nezha —
NezhaForNextSentencePrediction(Nezha model) - qdqbert —
QDQBertForNextSentencePrediction(QDQBert model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForNextSentencePrediction
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForNextSentencePrediction.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForNextSentencePrediction.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForNextSentencePrediction.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )TFAutoModelForNextSentencePrediction
This is a generic model class that will be instantiated as one of the model classes of the library (with a next sentence prediction head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- BertConfig configuration class: TFBertForNextSentencePrediction (BERT model)
MobileBertConfigconfiguration class:TFMobileBertForNextSentencePrediction(MobileBERT model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a next sentence prediction head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a next sentence prediction head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- bert — TFBertForNextSentencePrediction (BERT model)
- mobilebert —
TFMobileBertForNextSentencePrediction(MobileBERT model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForNextSentencePrediction
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForNextSentencePrediction.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = TFAutoModelForNextSentencePrediction.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = TFAutoModelForNextSentencePrediction.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )FlaxAutoModelForNextSentencePrediction
This is a generic model class that will be instantiated as one of the model classes of the library (with a next sentence prediction head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- BertConfig configuration class: FlaxBertForNextSentencePrediction (BERT model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a next sentence prediction head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a next sentence prediction head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- bert — FlaxBertForNextSentencePrediction (BERT model)
Examples:
>>> from transformers import AutoConfig, FlaxAutoModelForNextSentencePrediction
>>> # Download model and configuration from huggingface.co and cache.
>>> model = FlaxAutoModelForNextSentencePrediction.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = FlaxAutoModelForNextSentencePrediction.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = FlaxAutoModelForNextSentencePrediction.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )AutoModelForTokenClassification
This is a generic model class that will be instantiated as one of the model classes of the library (with a token classification head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: AlbertForTokenClassification (ALBERT model)
- BertConfig configuration class: BertForTokenClassification (BERT model)
- BigBirdConfig configuration class: BigBirdForTokenClassification (BigBird model)
- BioGptConfig configuration class: BioGptForTokenClassification (BioGpt model)
- BloomConfig configuration class: BloomForTokenClassification (BLOOM model)
- BrosConfig configuration class: BrosForTokenClassification (BROS model)
- CamembertConfig configuration class: CamembertForTokenClassification (CamemBERT model)
- CanineConfig configuration class: CanineForTokenClassification (CANINE model)
- ConvBertConfig configuration class: ConvBertForTokenClassification (ConvBERT model)
- Data2VecTextConfig configuration class: Data2VecTextForTokenClassification (Data2VecText model)
- DebertaConfig configuration class: DebertaForTokenClassification (DeBERTa model)
- DebertaV2Config configuration class: DebertaV2ForTokenClassification (DeBERTa-v2 model)
DistilBertConfigconfiguration class:DistilBertForTokenClassification(DistilBERT model)ElectraConfigconfiguration class:ElectraForTokenClassification(ELECTRA model)ErnieConfigconfiguration class:ErnieForTokenClassification(ERNIE model)ErnieMConfigconfiguration class:ErnieMForTokenClassification(ErnieM model)EsmConfigconfiguration class:EsmForTokenClassification(ESM model)FNetConfigconfiguration class:FNetForTokenClassification(FNet model)FalconConfigconfiguration class:FalconForTokenClassification(Falcon model)FlaubertConfigconfiguration class:FlaubertForTokenClassification(FlauBERT model)FunnelConfigconfiguration class:FunnelForTokenClassification(Funnel Transformer model)GPT2Configconfiguration class:GPT2ForTokenClassification(OpenAI GPT-2 model)GPTBigCodeConfigconfiguration class:GPTBigCodeForTokenClassification(GPTBigCode model)GPTNeoConfigconfiguration class:GPTNeoForTokenClassification(GPT Neo model)GPTNeoXConfigconfiguration class:GPTNeoXForTokenClassification(GPT NeoX model)Gemma2Configconfiguration class:Gemma2ForTokenClassification(Gemma2 model)GemmaConfigconfiguration class:GemmaForTokenClassification(Gemma model)IBertConfigconfiguration class:IBertForTokenClassification(I-BERT model)LayoutLMConfigconfiguration class:LayoutLMForTokenClassification(LayoutLM model)LayoutLMv2Configconfiguration class:LayoutLMv2ForTokenClassification(LayoutLMv2 model)LayoutLMv3Configconfiguration class:LayoutLMv3ForTokenClassification(LayoutLMv3 model)LiltConfigconfiguration class:LiltForTokenClassification(LiLT model)LlamaConfigconfiguration class:LlamaForTokenClassification(LLaMA model)LongformerConfigconfiguration class:LongformerForTokenClassification(Longformer model)LukeConfigconfiguration class:LukeForTokenClassification(LUKE model)MPNetConfigconfiguration class:MPNetForTokenClassification(MPNet model)MT5Configconfiguration class:MT5ForTokenClassification(MT5 model)MarkupLMConfigconfiguration class:MarkupLMForTokenClassification(MarkupLM model)MegaConfigconfiguration class:MegaForTokenClassification(MEGA model)MegatronBertConfigconfiguration class:MegatronBertForTokenClassification(Megatron-BERT model)MistralConfigconfiguration class:MistralForTokenClassification(Mistral model)MixtralConfigconfiguration class:MixtralForTokenClassification(Mixtral model)MobileBertConfigconfiguration class:MobileBertForTokenClassification(MobileBERT model)MptConfigconfiguration class:MptForTokenClassification(MPT model)MraConfigconfiguration class:MraForTokenClassification(MRA model)NezhaConfigconfiguration class:NezhaForTokenClassification(Nezha model)NystromformerConfigconfiguration class:NystromformerForTokenClassification(Nyströmformer model)PersimmonConfigconfiguration class:PersimmonForTokenClassification(Persimmon model)Phi3Configconfiguration class:Phi3ForTokenClassification(Phi3 model)PhiConfigconfiguration class:PhiForTokenClassification(Phi model)QDQBertConfigconfiguration class:QDQBertForTokenClassification(QDQBert model)Qwen2Configconfiguration class:Qwen2ForTokenClassification(Qwen2 model)Qwen2MoeConfigconfiguration class:Qwen2MoeForTokenClassification(Qwen2MoE model)RemBertConfigconfiguration class:RemBertForTokenClassification(RemBERT model)RoCBertConfigconfiguration class:RoCBertForTokenClassification(RoCBert model)RoFormerConfigconfiguration class:RoFormerForTokenClassification(RoFormer model)RobertaConfigconfiguration class:RobertaForTokenClassification(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:RobertaPreLayerNormForTokenClassification(RoBERTa-PreLayerNorm model)SqueezeBertConfigconfiguration class:SqueezeBertForTokenClassification(SqueezeBERT model)StableLmConfigconfiguration class:StableLmForTokenClassification(StableLm model)Starcoder2Configconfiguration class:Starcoder2ForTokenClassification(Starcoder2 model)T5Configconfiguration class:T5ForTokenClassification(T5 model)UMT5Configconfiguration class:UMT5ForTokenClassification(UMT5 model)XLMConfigconfiguration class:XLMForTokenClassification(XLM model)XLMRobertaConfigconfiguration class:XLMRobertaForTokenClassification(XLM-RoBERTa model)XLMRobertaXLConfigconfiguration class:XLMRobertaXLForTokenClassification(XLM-RoBERTa-XL model)XLNetConfigconfiguration class:XLNetForTokenClassification(XLNet model)XmodConfigconfiguration class:XmodForTokenClassification(X-MOD model)YosoConfigconfiguration class:YosoForTokenClassification(YOSO model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a token classification head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a token classification head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — AlbertForTokenClassification (ALBERT model)
- bert — BertForTokenClassification (BERT model)
- big_bird — BigBirdForTokenClassification (BigBird model)
- biogpt — BioGptForTokenClassification (BioGpt model)
- bloom — BloomForTokenClassification (BLOOM model)
- bros — BrosForTokenClassification (BROS model)
- camembert — CamembertForTokenClassification (CamemBERT model)
- canine — CanineForTokenClassification (CANINE model)
- convbert — ConvBertForTokenClassification (ConvBERT model)
- data2vec-text — Data2VecTextForTokenClassification (Data2VecText model)
- deberta — DebertaForTokenClassification (DeBERTa model)
- deberta-v2 — DebertaV2ForTokenClassification (DeBERTa-v2 model)
- distilbert —
DistilBertForTokenClassification(DistilBERT model) - electra —
ElectraForTokenClassification(ELECTRA model) - ernie —
ErnieForTokenClassification(ERNIE model) - ernie_m —
ErnieMForTokenClassification(ErnieM model) - esm —
EsmForTokenClassification(ESM model) - falcon —
FalconForTokenClassification(Falcon model) - flaubert —
FlaubertForTokenClassification(FlauBERT model) - fnet —
FNetForTokenClassification(FNet model) - funnel —
FunnelForTokenClassification(Funnel Transformer model) - gemma —
GemmaForTokenClassification(Gemma model) - gemma2 —
Gemma2ForTokenClassification(Gemma2 model) - gpt-sw3 —
GPT2ForTokenClassification(GPT-Sw3 model) - gpt2 —
GPT2ForTokenClassification(OpenAI GPT-2 model) - gpt_bigcode —
GPTBigCodeForTokenClassification(GPTBigCode model) - gpt_neo —
GPTNeoForTokenClassification(GPT Neo model) - gpt_neox —
GPTNeoXForTokenClassification(GPT NeoX model) - ibert —
IBertForTokenClassification(I-BERT model) - layoutlm —
LayoutLMForTokenClassification(LayoutLM model) - layoutlmv2 —
LayoutLMv2ForTokenClassification(LayoutLMv2 model) - layoutlmv3 —
LayoutLMv3ForTokenClassification(LayoutLMv3 model) - lilt —
LiltForTokenClassification(LiLT model) - llama —
LlamaForTokenClassification(LLaMA model) - longformer —
LongformerForTokenClassification(Longformer model) - luke —
LukeForTokenClassification(LUKE model) - markuplm —
MarkupLMForTokenClassification(MarkupLM model) - mega —
MegaForTokenClassification(MEGA model) - megatron-bert —
MegatronBertForTokenClassification(Megatron-BERT model) - mistral —
MistralForTokenClassification(Mistral model) - mixtral —
MixtralForTokenClassification(Mixtral model) - mobilebert —
MobileBertForTokenClassification(MobileBERT model) - mpnet —
MPNetForTokenClassification(MPNet model) - mpt —
MptForTokenClassification(MPT model) - mra —
MraForTokenClassification(MRA model) - mt5 —
MT5ForTokenClassification(MT5 model) - nezha —
NezhaForTokenClassification(Nezha model) - nystromformer —
NystromformerForTokenClassification(Nyströmformer model) - persimmon —
PersimmonForTokenClassification(Persimmon model) - phi —
PhiForTokenClassification(Phi model) - phi3 —
Phi3ForTokenClassification(Phi3 model) - qdqbert —
QDQBertForTokenClassification(QDQBert model) - qwen2 —
Qwen2ForTokenClassification(Qwen2 model) - qwen2_moe —
Qwen2MoeForTokenClassification(Qwen2MoE model) - rembert —
RemBertForTokenClassification(RemBERT model) - roberta —
RobertaForTokenClassification(RoBERTa model) - roberta-prelayernorm —
RobertaPreLayerNormForTokenClassification(RoBERTa-PreLayerNorm model) - roc_bert —
RoCBertForTokenClassification(RoCBert model) - roformer —
RoFormerForTokenClassification(RoFormer model) - squeezebert —
SqueezeBertForTokenClassification(SqueezeBERT model) - stablelm —
StableLmForTokenClassification(StableLm model) - starcoder2 —
Starcoder2ForTokenClassification(Starcoder2 model) - t5 —
T5ForTokenClassification(T5 model) - umt5 —
UMT5ForTokenClassification(UMT5 model) - xlm —
XLMForTokenClassification(XLM model) - xlm-roberta —
XLMRobertaForTokenClassification(XLM-RoBERTa model) - xlm-roberta-xl —
XLMRobertaXLForTokenClassification(XLM-RoBERTa-XL model) - xlnet —
XLNetForTokenClassification(XLNet model) - xmod —
XmodForTokenClassification(X-MOD model) - yoso —
YosoForTokenClassification(YOSO model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForTokenClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForTokenClassification.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForTokenClassification.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForTokenClassification.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )TFAutoModelForTokenClassification
This is a generic model class that will be instantiated as one of the model classes of the library (with a token classification head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: TFAlbertForTokenClassification (ALBERT model)
- BertConfig configuration class: TFBertForTokenClassification (BERT model)
- CamembertConfig configuration class: TFCamembertForTokenClassification (CamemBERT model)
- ConvBertConfig configuration class: TFConvBertForTokenClassification (ConvBERT model)
- DebertaConfig configuration class: TFDebertaForTokenClassification (DeBERTa model)
- DebertaV2Config configuration class: TFDebertaV2ForTokenClassification (DeBERTa-v2 model)
DistilBertConfigconfiguration class:TFDistilBertForTokenClassification(DistilBERT model)ElectraConfigconfiguration class:TFElectraForTokenClassification(ELECTRA model)EsmConfigconfiguration class:TFEsmForTokenClassification(ESM model)FlaubertConfigconfiguration class:TFFlaubertForTokenClassification(FlauBERT model)FunnelConfigconfiguration class:TFFunnelForTokenClassification(Funnel Transformer model)LayoutLMConfigconfiguration class:TFLayoutLMForTokenClassification(LayoutLM model)LayoutLMv3Configconfiguration class:TFLayoutLMv3ForTokenClassification(LayoutLMv3 model)LongformerConfigconfiguration class:TFLongformerForTokenClassification(Longformer model)MPNetConfigconfiguration class:TFMPNetForTokenClassification(MPNet model)MobileBertConfigconfiguration class:TFMobileBertForTokenClassification(MobileBERT model)RemBertConfigconfiguration class:TFRemBertForTokenClassification(RemBERT model)RoFormerConfigconfiguration class:TFRoFormerForTokenClassification(RoFormer model)RobertaConfigconfiguration class:TFRobertaForTokenClassification(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:TFRobertaPreLayerNormForTokenClassification(RoBERTa-PreLayerNorm model)XLMConfigconfiguration class:TFXLMForTokenClassification(XLM model)XLMRobertaConfigconfiguration class:TFXLMRobertaForTokenClassification(XLM-RoBERTa model)XLNetConfigconfiguration class:TFXLNetForTokenClassification(XLNet model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a token classification head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a token classification head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — TFAlbertForTokenClassification (ALBERT model)
- bert — TFBertForTokenClassification (BERT model)
- camembert — TFCamembertForTokenClassification (CamemBERT model)
- convbert — TFConvBertForTokenClassification (ConvBERT model)
- deberta — TFDebertaForTokenClassification (DeBERTa model)
- deberta-v2 — TFDebertaV2ForTokenClassification (DeBERTa-v2 model)
- distilbert —
TFDistilBertForTokenClassification(DistilBERT model) - electra —
TFElectraForTokenClassification(ELECTRA model) - esm —
TFEsmForTokenClassification(ESM model) - flaubert —
TFFlaubertForTokenClassification(FlauBERT model) - funnel —
TFFunnelForTokenClassification(Funnel Transformer model) - layoutlm —
TFLayoutLMForTokenClassification(LayoutLM model) - layoutlmv3 —
TFLayoutLMv3ForTokenClassification(LayoutLMv3 model) - longformer —
TFLongformerForTokenClassification(Longformer model) - mobilebert —
TFMobileBertForTokenClassification(MobileBERT model) - mpnet —
TFMPNetForTokenClassification(MPNet model) - rembert —
TFRemBertForTokenClassification(RemBERT model) - roberta —
TFRobertaForTokenClassification(RoBERTa model) - roberta-prelayernorm —
TFRobertaPreLayerNormForTokenClassification(RoBERTa-PreLayerNorm model) - roformer —
TFRoFormerForTokenClassification(RoFormer model) - xlm —
TFXLMForTokenClassification(XLM model) - xlm-roberta —
TFXLMRobertaForTokenClassification(XLM-RoBERTa model) - xlnet —
TFXLNetForTokenClassification(XLNet model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForTokenClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForTokenClassification.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = TFAutoModelForTokenClassification.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = TFAutoModelForTokenClassification.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )FlaxAutoModelForTokenClassification
This is a generic model class that will be instantiated as one of the model classes of the library (with a token classification head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: FlaxAlbertForTokenClassification (ALBERT model)
- BertConfig configuration class: FlaxBertForTokenClassification (BERT model)
- BigBirdConfig configuration class: FlaxBigBirdForTokenClassification (BigBird model)
DistilBertConfigconfiguration class:FlaxDistilBertForTokenClassification(DistilBERT model)ElectraConfigconfiguration class:FlaxElectraForTokenClassification(ELECTRA model)RoFormerConfigconfiguration class:FlaxRoFormerForTokenClassification(RoFormer model)RobertaConfigconfiguration class:FlaxRobertaForTokenClassification(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:FlaxRobertaPreLayerNormForTokenClassification(RoBERTa-PreLayerNorm model)XLMRobertaConfigconfiguration class:FlaxXLMRobertaForTokenClassification(XLM-RoBERTa model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a token classification head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a token classification head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — FlaxAlbertForTokenClassification (ALBERT model)
- bert — FlaxBertForTokenClassification (BERT model)
- big_bird — FlaxBigBirdForTokenClassification (BigBird model)
- distilbert —
FlaxDistilBertForTokenClassification(DistilBERT model) - electra —
FlaxElectraForTokenClassification(ELECTRA model) - roberta —
FlaxRobertaForTokenClassification(RoBERTa model) - roberta-prelayernorm —
FlaxRobertaPreLayerNormForTokenClassification(RoBERTa-PreLayerNorm model) - roformer —
FlaxRoFormerForTokenClassification(RoFormer model) - xlm-roberta —
FlaxXLMRobertaForTokenClassification(XLM-RoBERTa model)
Examples:
>>> from transformers import AutoConfig, FlaxAutoModelForTokenClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = FlaxAutoModelForTokenClassification.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = FlaxAutoModelForTokenClassification.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = FlaxAutoModelForTokenClassification.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )AutoModelForQuestionAnswering
This is a generic model class that will be instantiated as one of the model classes of the library (with a question answering head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: AlbertForQuestionAnswering (ALBERT model)
- BartConfig configuration class: BartForQuestionAnswering (BART model)
- BertConfig configuration class: BertForQuestionAnswering (BERT model)
- BigBirdConfig configuration class: BigBirdForQuestionAnswering (BigBird model)
- BigBirdPegasusConfig configuration class: BigBirdPegasusForQuestionAnswering (BigBird-Pegasus model)
- BloomConfig configuration class: BloomForQuestionAnswering (BLOOM model)
- CamembertConfig configuration class: CamembertForQuestionAnswering (CamemBERT model)
- CanineConfig configuration class: CanineForQuestionAnswering (CANINE model)
- ConvBertConfig configuration class: ConvBertForQuestionAnswering (ConvBERT model)
- Data2VecTextConfig configuration class: Data2VecTextForQuestionAnswering (Data2VecText model)
- DebertaConfig configuration class: DebertaForQuestionAnswering (DeBERTa model)
- DebertaV2Config configuration class: DebertaV2ForQuestionAnswering (DeBERTa-v2 model)
DistilBertConfigconfiguration class:DistilBertForQuestionAnswering(DistilBERT model)ElectraConfigconfiguration class:ElectraForQuestionAnswering(ELECTRA model)ErnieConfigconfiguration class:ErnieForQuestionAnswering(ERNIE model)ErnieMConfigconfiguration class:ErnieMForQuestionAnswering(ErnieM model)FNetConfigconfiguration class:FNetForQuestionAnswering(FNet model)FalconConfigconfiguration class:FalconForQuestionAnswering(Falcon model)FlaubertConfigconfiguration class:FlaubertForQuestionAnsweringSimple(FlauBERT model)FunnelConfigconfiguration class:FunnelForQuestionAnswering(Funnel Transformer model)GPT2Configconfiguration class:GPT2ForQuestionAnswering(OpenAI GPT-2 model)GPTJConfigconfiguration class:GPTJForQuestionAnswering(GPT-J model)GPTNeoConfigconfiguration class:GPTNeoForQuestionAnswering(GPT Neo model)GPTNeoXConfigconfiguration class:GPTNeoXForQuestionAnswering(GPT NeoX model)IBertConfigconfiguration class:IBertForQuestionAnswering(I-BERT model)LEDConfigconfiguration class:LEDForQuestionAnswering(LED model)LayoutLMv2Configconfiguration class:LayoutLMv2ForQuestionAnswering(LayoutLMv2 model)LayoutLMv3Configconfiguration class:LayoutLMv3ForQuestionAnswering(LayoutLMv3 model)LiltConfigconfiguration class:LiltForQuestionAnswering(LiLT model)LlamaConfigconfiguration class:LlamaForQuestionAnswering(LLaMA model)LongformerConfigconfiguration class:LongformerForQuestionAnswering(Longformer model)LukeConfigconfiguration class:LukeForQuestionAnswering(LUKE model)LxmertConfigconfiguration class:LxmertForQuestionAnswering(LXMERT model)MBartConfigconfiguration class:MBartForQuestionAnswering(mBART model)MPNetConfigconfiguration class:MPNetForQuestionAnswering(MPNet model)MT5Configconfiguration class:MT5ForQuestionAnswering(MT5 model)MarkupLMConfigconfiguration class:MarkupLMForQuestionAnswering(MarkupLM model)MegaConfigconfiguration class:MegaForQuestionAnswering(MEGA model)MegatronBertConfigconfiguration class:MegatronBertForQuestionAnswering(Megatron-BERT model)MobileBertConfigconfiguration class:MobileBertForQuestionAnswering(MobileBERT model)MptConfigconfiguration class:MptForQuestionAnswering(MPT model)MraConfigconfiguration class:MraForQuestionAnswering(MRA model)MvpConfigconfiguration class:MvpForQuestionAnswering(MVP model)NezhaConfigconfiguration class:NezhaForQuestionAnswering(Nezha model)NystromformerConfigconfiguration class:NystromformerForQuestionAnswering(Nyströmformer model)OPTConfigconfiguration class:OPTForQuestionAnswering(OPT model)QDQBertConfigconfiguration class:QDQBertForQuestionAnswering(QDQBert model)ReformerConfigconfiguration class:ReformerForQuestionAnswering(Reformer model)RemBertConfigconfiguration class:RemBertForQuestionAnswering(RemBERT model)RoCBertConfigconfiguration class:RoCBertForQuestionAnswering(RoCBert model)RoFormerConfigconfiguration class:RoFormerForQuestionAnswering(RoFormer model)RobertaConfigconfiguration class:RobertaForQuestionAnswering(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:RobertaPreLayerNormForQuestionAnswering(RoBERTa-PreLayerNorm model)SplinterConfigconfiguration class:SplinterForQuestionAnswering(Splinter model)SqueezeBertConfigconfiguration class:SqueezeBertForQuestionAnswering(SqueezeBERT model)T5Configconfiguration class:T5ForQuestionAnswering(T5 model)UMT5Configconfiguration class:UMT5ForQuestionAnswering(UMT5 model)XLMConfigconfiguration class:XLMForQuestionAnsweringSimple(XLM model)XLMRobertaConfigconfiguration class:XLMRobertaForQuestionAnswering(XLM-RoBERTa model)XLMRobertaXLConfigconfiguration class:XLMRobertaXLForQuestionAnswering(XLM-RoBERTa-XL model)XLNetConfigconfiguration class:XLNetForQuestionAnsweringSimple(XLNet model)XmodConfigconfiguration class:XmodForQuestionAnswering(X-MOD model)YosoConfigconfiguration class:YosoForQuestionAnswering(YOSO model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a question answering head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a question answering head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — AlbertForQuestionAnswering (ALBERT model)
- bart — BartForQuestionAnswering (BART model)
- bert — BertForQuestionAnswering (BERT model)
- big_bird — BigBirdForQuestionAnswering (BigBird model)
- bigbird_pegasus — BigBirdPegasusForQuestionAnswering (BigBird-Pegasus model)
- bloom — BloomForQuestionAnswering (BLOOM model)
- camembert — CamembertForQuestionAnswering (CamemBERT model)
- canine — CanineForQuestionAnswering (CANINE model)
- convbert — ConvBertForQuestionAnswering (ConvBERT model)
- data2vec-text — Data2VecTextForQuestionAnswering (Data2VecText model)
- deberta — DebertaForQuestionAnswering (DeBERTa model)
- deberta-v2 — DebertaV2ForQuestionAnswering (DeBERTa-v2 model)
- distilbert —
DistilBertForQuestionAnswering(DistilBERT model) - electra —
ElectraForQuestionAnswering(ELECTRA model) - ernie —
ErnieForQuestionAnswering(ERNIE model) - ernie_m —
ErnieMForQuestionAnswering(ErnieM model) - falcon —
FalconForQuestionAnswering(Falcon model) - flaubert —
FlaubertForQuestionAnsweringSimple(FlauBERT model) - fnet —
FNetForQuestionAnswering(FNet model) - funnel —
FunnelForQuestionAnswering(Funnel Transformer model) - gpt2 —
GPT2ForQuestionAnswering(OpenAI GPT-2 model) - gpt_neo —
GPTNeoForQuestionAnswering(GPT Neo model) - gpt_neox —
GPTNeoXForQuestionAnswering(GPT NeoX model) - gptj —
GPTJForQuestionAnswering(GPT-J model) - ibert —
IBertForQuestionAnswering(I-BERT model) - layoutlmv2 —
LayoutLMv2ForQuestionAnswering(LayoutLMv2 model) - layoutlmv3 —
LayoutLMv3ForQuestionAnswering(LayoutLMv3 model) - led —
LEDForQuestionAnswering(LED model) - lilt —
LiltForQuestionAnswering(LiLT model) - llama —
LlamaForQuestionAnswering(LLaMA model) - longformer —
LongformerForQuestionAnswering(Longformer model) - luke —
LukeForQuestionAnswering(LUKE model) - lxmert —
LxmertForQuestionAnswering(LXMERT model) - markuplm —
MarkupLMForQuestionAnswering(MarkupLM model) - mbart —
MBartForQuestionAnswering(mBART model) - mega —
MegaForQuestionAnswering(MEGA model) - megatron-bert —
MegatronBertForQuestionAnswering(Megatron-BERT model) - mobilebert —
MobileBertForQuestionAnswering(MobileBERT model) - mpnet —
MPNetForQuestionAnswering(MPNet model) - mpt —
MptForQuestionAnswering(MPT model) - mra —
MraForQuestionAnswering(MRA model) - mt5 —
MT5ForQuestionAnswering(MT5 model) - mvp —
MvpForQuestionAnswering(MVP model) - nezha —
NezhaForQuestionAnswering(Nezha model) - nystromformer —
NystromformerForQuestionAnswering(Nyströmformer model) - opt —
OPTForQuestionAnswering(OPT model) - qdqbert —
QDQBertForQuestionAnswering(QDQBert model) - reformer —
ReformerForQuestionAnswering(Reformer model) - rembert —
RemBertForQuestionAnswering(RemBERT model) - roberta —
RobertaForQuestionAnswering(RoBERTa model) - roberta-prelayernorm —
RobertaPreLayerNormForQuestionAnswering(RoBERTa-PreLayerNorm model) - roc_bert —
RoCBertForQuestionAnswering(RoCBert model) - roformer —
RoFormerForQuestionAnswering(RoFormer model) - splinter —
SplinterForQuestionAnswering(Splinter model) - squeezebert —
SqueezeBertForQuestionAnswering(SqueezeBERT model) - t5 —
T5ForQuestionAnswering(T5 model) - umt5 —
UMT5ForQuestionAnswering(UMT5 model) - xlm —
XLMForQuestionAnsweringSimple(XLM model) - xlm-roberta —
XLMRobertaForQuestionAnswering(XLM-RoBERTa model) - xlm-roberta-xl —
XLMRobertaXLForQuestionAnswering(XLM-RoBERTa-XL model) - xlnet —
XLNetForQuestionAnsweringSimple(XLNet model) - xmod —
XmodForQuestionAnswering(X-MOD model) - yoso —
YosoForQuestionAnswering(YOSO model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForQuestionAnswering
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForQuestionAnswering.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForQuestionAnswering.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForQuestionAnswering.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )TFAutoModelForQuestionAnswering
This is a generic model class that will be instantiated as one of the model classes of the library (with a question answering head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: TFAlbertForQuestionAnswering (ALBERT model)
- BertConfig configuration class: TFBertForQuestionAnswering (BERT model)
- CamembertConfig configuration class: TFCamembertForQuestionAnswering (CamemBERT model)
- ConvBertConfig configuration class: TFConvBertForQuestionAnswering (ConvBERT model)
- DebertaConfig configuration class: TFDebertaForQuestionAnswering (DeBERTa model)
- DebertaV2Config configuration class: TFDebertaV2ForQuestionAnswering (DeBERTa-v2 model)
DistilBertConfigconfiguration class:TFDistilBertForQuestionAnswering(DistilBERT model)ElectraConfigconfiguration class:TFElectraForQuestionAnswering(ELECTRA model)FlaubertConfigconfiguration class:TFFlaubertForQuestionAnsweringSimple(FlauBERT model)FunnelConfigconfiguration class:TFFunnelForQuestionAnswering(Funnel Transformer model)GPTJConfigconfiguration class:TFGPTJForQuestionAnswering(GPT-J model)LayoutLMv3Configconfiguration class:TFLayoutLMv3ForQuestionAnswering(LayoutLMv3 model)LongformerConfigconfiguration class:TFLongformerForQuestionAnswering(Longformer model)MPNetConfigconfiguration class:TFMPNetForQuestionAnswering(MPNet model)MobileBertConfigconfiguration class:TFMobileBertForQuestionAnswering(MobileBERT model)RemBertConfigconfiguration class:TFRemBertForQuestionAnswering(RemBERT model)RoFormerConfigconfiguration class:TFRoFormerForQuestionAnswering(RoFormer model)RobertaConfigconfiguration class:TFRobertaForQuestionAnswering(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:TFRobertaPreLayerNormForQuestionAnswering(RoBERTa-PreLayerNorm model)XLMConfigconfiguration class:TFXLMForQuestionAnsweringSimple(XLM model)XLMRobertaConfigconfiguration class:TFXLMRobertaForQuestionAnswering(XLM-RoBERTa model)XLNetConfigconfiguration class:TFXLNetForQuestionAnsweringSimple(XLNet model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a question answering head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a question answering head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — TFAlbertForQuestionAnswering (ALBERT model)
- bert — TFBertForQuestionAnswering (BERT model)
- camembert — TFCamembertForQuestionAnswering (CamemBERT model)
- convbert — TFConvBertForQuestionAnswering (ConvBERT model)
- deberta — TFDebertaForQuestionAnswering (DeBERTa model)
- deberta-v2 — TFDebertaV2ForQuestionAnswering (DeBERTa-v2 model)
- distilbert —
TFDistilBertForQuestionAnswering(DistilBERT model) - electra —
TFElectraForQuestionAnswering(ELECTRA model) - flaubert —
TFFlaubertForQuestionAnsweringSimple(FlauBERT model) - funnel —
TFFunnelForQuestionAnswering(Funnel Transformer model) - gptj —
TFGPTJForQuestionAnswering(GPT-J model) - layoutlmv3 —
TFLayoutLMv3ForQuestionAnswering(LayoutLMv3 model) - longformer —
TFLongformerForQuestionAnswering(Longformer model) - mobilebert —
TFMobileBertForQuestionAnswering(MobileBERT model) - mpnet —
TFMPNetForQuestionAnswering(MPNet model) - rembert —
TFRemBertForQuestionAnswering(RemBERT model) - roberta —
TFRobertaForQuestionAnswering(RoBERTa model) - roberta-prelayernorm —
TFRobertaPreLayerNormForQuestionAnswering(RoBERTa-PreLayerNorm model) - roformer —
TFRoFormerForQuestionAnswering(RoFormer model) - xlm —
TFXLMForQuestionAnsweringSimple(XLM model) - xlm-roberta —
TFXLMRobertaForQuestionAnswering(XLM-RoBERTa model) - xlnet —
TFXLNetForQuestionAnsweringSimple(XLNet model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForQuestionAnswering
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForQuestionAnswering.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = TFAutoModelForQuestionAnswering.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = TFAutoModelForQuestionAnswering.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )FlaxAutoModelForQuestionAnswering
This is a generic model class that will be instantiated as one of the model classes of the library (with a question answering head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlbertConfig configuration class: FlaxAlbertForQuestionAnswering (ALBERT model)
- BartConfig configuration class: FlaxBartForQuestionAnswering (BART model)
- BertConfig configuration class: FlaxBertForQuestionAnswering (BERT model)
- BigBirdConfig configuration class: FlaxBigBirdForQuestionAnswering (BigBird model)
DistilBertConfigconfiguration class:FlaxDistilBertForQuestionAnswering(DistilBERT model)ElectraConfigconfiguration class:FlaxElectraForQuestionAnswering(ELECTRA model)MBartConfigconfiguration class:FlaxMBartForQuestionAnswering(mBART model)RoFormerConfigconfiguration class:FlaxRoFormerForQuestionAnswering(RoFormer model)RobertaConfigconfiguration class:FlaxRobertaForQuestionAnswering(RoBERTa model)RobertaPreLayerNormConfigconfiguration class:FlaxRobertaPreLayerNormForQuestionAnswering(RoBERTa-PreLayerNorm model)XLMRobertaConfigconfiguration class:FlaxXLMRobertaForQuestionAnswering(XLM-RoBERTa model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a question answering head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a question answering head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- albert — FlaxAlbertForQuestionAnswering (ALBERT model)
- bart — FlaxBartForQuestionAnswering (BART model)
- bert — FlaxBertForQuestionAnswering (BERT model)
- big_bird — FlaxBigBirdForQuestionAnswering (BigBird model)
- distilbert —
FlaxDistilBertForQuestionAnswering(DistilBERT model) - electra —
FlaxElectraForQuestionAnswering(ELECTRA model) - mbart —
FlaxMBartForQuestionAnswering(mBART model) - roberta —
FlaxRobertaForQuestionAnswering(RoBERTa model) - roberta-prelayernorm —
FlaxRobertaPreLayerNormForQuestionAnswering(RoBERTa-PreLayerNorm model) - roformer —
FlaxRoFormerForQuestionAnswering(RoFormer model) - xlm-roberta —
FlaxXLMRobertaForQuestionAnswering(XLM-RoBERTa model)
Examples:
>>> from transformers import AutoConfig, FlaxAutoModelForQuestionAnswering
>>> # Download model and configuration from huggingface.co and cache.
>>> model = FlaxAutoModelForQuestionAnswering.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = FlaxAutoModelForQuestionAnswering.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = FlaxAutoModelForQuestionAnswering.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )AutoModelForTextEncoding
TFAutoModelForTextEncoding
Computer vision
以下の自動クラスは、次のコンピュータービジョンタスクに利用可能です。
AutoModelForDepthEstimation
This is a generic model class that will be instantiated as one of the model classes of the library (with a depth estimation head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
DPTConfigconfiguration class:DPTForDepthEstimation(DPT model)DepthAnythingConfigconfiguration class:DepthAnythingForDepthEstimation(Depth Anything model)GLPNConfigconfiguration class:GLPNForDepthEstimation(GLPN model)ZoeDepthConfigconfiguration class:ZoeDepthForDepthEstimation(ZoeDepth model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a depth estimation head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a depth estimation head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- depth_anything —
DepthAnythingForDepthEstimation(Depth Anything model) - dpt —
DPTForDepthEstimation(DPT model) - glpn —
GLPNForDepthEstimation(GLPN model) - zoedepth —
ZoeDepthForDepthEstimation(ZoeDepth model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForDepthEstimation
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForDepthEstimation.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForDepthEstimation.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForDepthEstimation.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )AutoModelForImageClassification
This is a generic model class that will be instantiated as one of the model classes of the library (with a image classification head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- BeitConfig configuration class: BeitForImageClassification (BEiT model)
- BitConfig configuration class: BitForImageClassification (BiT model)
- CLIPConfig configuration class:
CLIPForImageClassification(CLIP model) - ConvNextConfig configuration class: ConvNextForImageClassification (ConvNeXT model)
- ConvNextV2Config configuration class: ConvNextV2ForImageClassification (ConvNeXTV2 model)
- CvtConfig configuration class: CvtForImageClassification (CvT model)
- Data2VecVisionConfig configuration class: Data2VecVisionForImageClassification (Data2VecVision model)
- DeiTConfig configuration class: DeiTForImageClassification or DeiTForImageClassificationWithTeacher (DeiT model)
- DinatConfig configuration class: DinatForImageClassification (DiNAT model)
Dinov2Configconfiguration class:Dinov2ForImageClassification(DINOv2 model)EfficientFormerConfigconfiguration class:EfficientFormerForImageClassificationorEfficientFormerForImageClassificationWithTeacher(EfficientFormer model)EfficientNetConfigconfiguration class:EfficientNetForImageClassification(EfficientNet model)FocalNetConfigconfiguration class:FocalNetForImageClassification(FocalNet model)HieraConfigconfiguration class:HieraForImageClassification(Hiera model)ImageGPTConfigconfiguration class:ImageGPTForImageClassification(ImageGPT model)LevitConfigconfiguration class:LevitForImageClassificationorLevitForImageClassificationWithTeacher(LeViT model)MobileNetV1Configconfiguration class:MobileNetV1ForImageClassification(MobileNetV1 model)MobileNetV2Configconfiguration class:MobileNetV2ForImageClassification(MobileNetV2 model)MobileViTConfigconfiguration class:MobileViTForImageClassification(MobileViT model)MobileViTV2Configconfiguration class:MobileViTV2ForImageClassification(MobileViTV2 model)NatConfigconfiguration class:NatForImageClassification(NAT model)PerceiverConfigconfiguration class:PerceiverForImageClassificationLearnedorPerceiverForImageClassificationFourierorPerceiverForImageClassificationConvProcessing(Perceiver model)PoolFormerConfigconfiguration class:PoolFormerForImageClassification(PoolFormer model)PvtConfigconfiguration class:PvtForImageClassification(PVT model)PvtV2Configconfiguration class:PvtV2ForImageClassification(PVTv2 model)RegNetConfigconfiguration class:RegNetForImageClassification(RegNet model)ResNetConfigconfiguration class:ResNetForImageClassification(ResNet model)SegformerConfigconfiguration class:SegformerForImageClassification(SegFormer model)SiglipConfigconfiguration class:SiglipForImageClassification(SigLIP model)SwiftFormerConfigconfiguration class:SwiftFormerForImageClassification(SwiftFormer model)SwinConfigconfiguration class:SwinForImageClassification(Swin Transformer model)Swinv2Configconfiguration class:Swinv2ForImageClassification(Swin Transformer V2 model)VanConfigconfiguration class:VanForImageClassification(VAN model)ViTConfigconfiguration class:ViTForImageClassification(ViT model)ViTHybridConfigconfiguration class:ViTHybridForImageClassification(ViT Hybrid model)ViTMSNConfigconfiguration class:ViTMSNForImageClassification(ViTMSN model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a image classification head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a image classification head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- beit — BeitForImageClassification (BEiT model)
- bit — BitForImageClassification (BiT model)
- clip —
CLIPForImageClassification(CLIP model) - convnext — ConvNextForImageClassification (ConvNeXT model)
- convnextv2 — ConvNextV2ForImageClassification (ConvNeXTV2 model)
- cvt — CvtForImageClassification (CvT model)
- data2vec-vision — Data2VecVisionForImageClassification (Data2VecVision model)
- deit — DeiTForImageClassification or DeiTForImageClassificationWithTeacher (DeiT model)
- dinat — DinatForImageClassification (DiNAT model)
- dinov2 —
Dinov2ForImageClassification(DINOv2 model) - efficientformer —
EfficientFormerForImageClassificationorEfficientFormerForImageClassificationWithTeacher(EfficientFormer model) - efficientnet —
EfficientNetForImageClassification(EfficientNet model) - focalnet —
FocalNetForImageClassification(FocalNet model) - hiera —
HieraForImageClassification(Hiera model) - imagegpt —
ImageGPTForImageClassification(ImageGPT model) - levit —
LevitForImageClassificationorLevitForImageClassificationWithTeacher(LeViT model) - mobilenet_v1 —
MobileNetV1ForImageClassification(MobileNetV1 model) - mobilenet_v2 —
MobileNetV2ForImageClassification(MobileNetV2 model) - mobilevit —
MobileViTForImageClassification(MobileViT model) - mobilevitv2 —
MobileViTV2ForImageClassification(MobileViTV2 model) - nat —
NatForImageClassification(NAT model) - perceiver —
PerceiverForImageClassificationLearnedorPerceiverForImageClassificationFourierorPerceiverForImageClassificationConvProcessing(Perceiver model) - poolformer —
PoolFormerForImageClassification(PoolFormer model) - pvt —
PvtForImageClassification(PVT model) - pvt_v2 —
PvtV2ForImageClassification(PVTv2 model) - regnet —
RegNetForImageClassification(RegNet model) - resnet —
ResNetForImageClassification(ResNet model) - segformer —
SegformerForImageClassification(SegFormer model) - siglip —
SiglipForImageClassification(SigLIP model) - swiftformer —
SwiftFormerForImageClassification(SwiftFormer model) - swin —
SwinForImageClassification(Swin Transformer model) - swinv2 —
Swinv2ForImageClassification(Swin Transformer V2 model) - van —
VanForImageClassification(VAN model) - vit —
ViTForImageClassification(ViT model) - vit_hybrid —
ViTHybridForImageClassification(ViT Hybrid model) - vit_msn —
ViTMSNForImageClassification(ViTMSN model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForImageClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForImageClassification.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForImageClassification.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForImageClassification.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )TFAutoModelForImageClassification
This is a generic model class that will be instantiated as one of the model classes of the library (with a image classification head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- ConvNextConfig configuration class: TFConvNextForImageClassification (ConvNeXT model)
- ConvNextV2Config configuration class: TFConvNextV2ForImageClassification (ConvNeXTV2 model)
- CvtConfig configuration class: TFCvtForImageClassification (CvT model)
- Data2VecVisionConfig configuration class: TFData2VecVisionForImageClassification (Data2VecVision model)
- DeiTConfig configuration class: TFDeiTForImageClassification or TFDeiTForImageClassificationWithTeacher (DeiT model)
EfficientFormerConfigconfiguration class:TFEfficientFormerForImageClassificationorTFEfficientFormerForImageClassificationWithTeacher(EfficientFormer model)MobileViTConfigconfiguration class:TFMobileViTForImageClassification(MobileViT model)RegNetConfigconfiguration class:TFRegNetForImageClassification(RegNet model)ResNetConfigconfiguration class:TFResNetForImageClassification(ResNet model)SegformerConfigconfiguration class:TFSegformerForImageClassification(SegFormer model)SwiftFormerConfigconfiguration class:TFSwiftFormerForImageClassification(SwiftFormer model)SwinConfigconfiguration class:TFSwinForImageClassification(Swin Transformer model)ViTConfigconfiguration class:TFViTForImageClassification(ViT model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a image classification head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a image classification head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- convnext — TFConvNextForImageClassification (ConvNeXT model)
- convnextv2 — TFConvNextV2ForImageClassification (ConvNeXTV2 model)
- cvt — TFCvtForImageClassification (CvT model)
- data2vec-vision — TFData2VecVisionForImageClassification (Data2VecVision model)
- deit — TFDeiTForImageClassification or TFDeiTForImageClassificationWithTeacher (DeiT model)
- efficientformer —
TFEfficientFormerForImageClassificationorTFEfficientFormerForImageClassificationWithTeacher(EfficientFormer model) - mobilevit —
TFMobileViTForImageClassification(MobileViT model) - regnet —
TFRegNetForImageClassification(RegNet model) - resnet —
TFResNetForImageClassification(ResNet model) - segformer —
TFSegformerForImageClassification(SegFormer model) - swiftformer —
TFSwiftFormerForImageClassification(SwiftFormer model) - swin —
TFSwinForImageClassification(Swin Transformer model) - vit —
TFViTForImageClassification(ViT model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForImageClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForImageClassification.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = TFAutoModelForImageClassification.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = TFAutoModelForImageClassification.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )FlaxAutoModelForImageClassification
This is a generic model class that will be instantiated as one of the model classes of the library (with a image classification head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- BeitConfig configuration class: FlaxBeitForImageClassification (BEiT model)
RegNetConfigconfiguration class:FlaxRegNetForImageClassification(RegNet model)ResNetConfigconfiguration class:FlaxResNetForImageClassification(ResNet model)ViTConfigconfiguration class:FlaxViTForImageClassification(ViT model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a image classification head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a image classification head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- beit — FlaxBeitForImageClassification (BEiT model)
- regnet —
FlaxRegNetForImageClassification(RegNet model) - resnet —
FlaxResNetForImageClassification(ResNet model) - vit —
FlaxViTForImageClassification(ViT model)
Examples:
>>> from transformers import AutoConfig, FlaxAutoModelForImageClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = FlaxAutoModelForImageClassification.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = FlaxAutoModelForImageClassification.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = FlaxAutoModelForImageClassification.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )AutoModelForVideoClassification
This is a generic model class that will be instantiated as one of the model classes of the library (with a video classification head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
TimesformerConfigconfiguration class:TimesformerForVideoClassification(TimeSformer model)VideoMAEConfigconfiguration class:VideoMAEForVideoClassification(VideoMAE model)VivitConfigconfiguration class:VivitForVideoClassification(ViViT model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a video classification head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a video classification head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- timesformer —
TimesformerForVideoClassification(TimeSformer model) - videomae —
VideoMAEForVideoClassification(VideoMAE model) - vivit —
VivitForVideoClassification(ViViT model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForVideoClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForVideoClassification.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForVideoClassification.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForVideoClassification.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )AutoModelForMaskedImageModeling
This is a generic model class that will be instantiated as one of the model classes of the library (with a masked image modeling head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- DeiTConfig configuration class: DeiTForMaskedImageModeling (DeiT model)
FocalNetConfigconfiguration class:FocalNetForMaskedImageModeling(FocalNet model)SwinConfigconfiguration class:SwinForMaskedImageModeling(Swin Transformer model)Swinv2Configconfiguration class:Swinv2ForMaskedImageModeling(Swin Transformer V2 model)ViTConfigconfiguration class:ViTForMaskedImageModeling(ViT model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a masked image modeling head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a masked image modeling head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- deit — DeiTForMaskedImageModeling (DeiT model)
- focalnet —
FocalNetForMaskedImageModeling(FocalNet model) - swin —
SwinForMaskedImageModeling(Swin Transformer model) - swinv2 —
Swinv2ForMaskedImageModeling(Swin Transformer V2 model) - vit —
ViTForMaskedImageModeling(ViT model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForMaskedImageModeling
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForMaskedImageModeling.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForMaskedImageModeling.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForMaskedImageModeling.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )TFAutoModelForMaskedImageModeling
This is a generic model class that will be instantiated as one of the model classes of the library (with a masked image modeling head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- DeiTConfig configuration class: TFDeiTForMaskedImageModeling (DeiT model)
SwinConfigconfiguration class:TFSwinForMaskedImageModeling(Swin Transformer model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a masked image modeling head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a masked image modeling head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- deit — TFDeiTForMaskedImageModeling (DeiT model)
- swin —
TFSwinForMaskedImageModeling(Swin Transformer model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForMaskedImageModeling
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForMaskedImageModeling.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = TFAutoModelForMaskedImageModeling.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = TFAutoModelForMaskedImageModeling.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )AutoModelForObjectDetection
This is a generic model class that will be instantiated as one of the model classes of the library (with a object detection head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- ConditionalDetrConfig configuration class: ConditionalDetrForObjectDetection (Conditional DETR model)
- DeformableDetrConfig configuration class: DeformableDetrForObjectDetection (Deformable DETR model)
- DetaConfig configuration class: DetaForObjectDetection (DETA model)
- DetrConfig configuration class: DetrForObjectDetection (DETR model)
RTDetrConfigconfiguration class:RTDetrForObjectDetection(RT-DETR model)TableTransformerConfigconfiguration class:TableTransformerForObjectDetection(Table Transformer model)YolosConfigconfiguration class:YolosForObjectDetection(YOLOS model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a object detection head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a object detection head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- conditional_detr — ConditionalDetrForObjectDetection (Conditional DETR model)
- deformable_detr — DeformableDetrForObjectDetection (Deformable DETR model)
- deta — DetaForObjectDetection (DETA model)
- detr — DetrForObjectDetection (DETR model)
- rt_detr —
RTDetrForObjectDetection(RT-DETR model) - table-transformer —
TableTransformerForObjectDetection(Table Transformer model) - yolos —
YolosForObjectDetection(YOLOS model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForObjectDetection
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForObjectDetection.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForObjectDetection.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForObjectDetection.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )AutoModelForImageSegmentation
This is a generic model class that will be instantiated as one of the model classes of the library (with a image segmentation head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- DetrConfig configuration class: DetrForSegmentation (DETR model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a image segmentation head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a image segmentation head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- detr — DetrForSegmentation (DETR model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForImageSegmentation
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForImageSegmentation.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForImageSegmentation.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForImageSegmentation.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )AutoModelForImageToImage
AutoModelForSemanticSegmentation
This is a generic model class that will be instantiated as one of the model classes of the library (with a semantic segmentation head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- BeitConfig configuration class: BeitForSemanticSegmentation (BEiT model)
DPTConfigconfiguration class:DPTForSemanticSegmentation(DPT model)- Data2VecVisionConfig configuration class: Data2VecVisionForSemanticSegmentation (Data2VecVision model)
MobileNetV2Configconfiguration class:MobileNetV2ForSemanticSegmentation(MobileNetV2 model)MobileViTConfigconfiguration class:MobileViTForSemanticSegmentation(MobileViT model)MobileViTV2Configconfiguration class:MobileViTV2ForSemanticSegmentation(MobileViTV2 model)SegformerConfigconfiguration class:SegformerForSemanticSegmentation(SegFormer model)UperNetConfigconfiguration class:UperNetForSemanticSegmentation(UPerNet model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a semantic segmentation head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a semantic segmentation head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- beit — BeitForSemanticSegmentation (BEiT model)
- data2vec-vision — Data2VecVisionForSemanticSegmentation (Data2VecVision model)
- dpt —
DPTForSemanticSegmentation(DPT model) - mobilenet_v2 —
MobileNetV2ForSemanticSegmentation(MobileNetV2 model) - mobilevit —
MobileViTForSemanticSegmentation(MobileViT model) - mobilevitv2 —
MobileViTV2ForSemanticSegmentation(MobileViTV2 model) - segformer —
SegformerForSemanticSegmentation(SegFormer model) - upernet —
UperNetForSemanticSegmentation(UPerNet model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForSemanticSegmentation
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForSemanticSegmentation.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForSemanticSegmentation.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForSemanticSegmentation.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )TFAutoModelForSemanticSegmentation
This is a generic model class that will be instantiated as one of the model classes of the library (with a semantic segmentation head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- Data2VecVisionConfig configuration class: TFData2VecVisionForSemanticSegmentation (Data2VecVision model)
MobileViTConfigconfiguration class:TFMobileViTForSemanticSegmentation(MobileViT model)SegformerConfigconfiguration class:TFSegformerForSemanticSegmentation(SegFormer model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a semantic segmentation head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a semantic segmentation head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- data2vec-vision — TFData2VecVisionForSemanticSegmentation (Data2VecVision model)
- mobilevit —
TFMobileViTForSemanticSegmentation(MobileViT model) - segformer —
TFSegformerForSemanticSegmentation(SegFormer model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForSemanticSegmentation
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForSemanticSegmentation.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = TFAutoModelForSemanticSegmentation.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = TFAutoModelForSemanticSegmentation.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )AutoModelForInstanceSegmentation
This is a generic model class that will be instantiated as one of the model classes of the library (with a instance segmentation head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
MaskFormerConfigconfiguration class:MaskFormerForInstanceSegmentation(MaskFormer model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a instance segmentation head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a instance segmentation head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- maskformer —
MaskFormerForInstanceSegmentation(MaskFormer model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForInstanceSegmentation
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForInstanceSegmentation.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForInstanceSegmentation.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForInstanceSegmentation.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )AutoModelForUniversalSegmentation
This is a generic model class that will be instantiated as one of the model classes of the library (with a universal image segmentation head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- DetrConfig configuration class: DetrForSegmentation (DETR model)
Mask2FormerConfigconfiguration class:Mask2FormerForUniversalSegmentation(Mask2Former model)MaskFormerConfigconfiguration class:MaskFormerForInstanceSegmentation(MaskFormer model)OneFormerConfigconfiguration class:OneFormerForUniversalSegmentation(OneFormer model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a universal image segmentation head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a universal image segmentation head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- detr — DetrForSegmentation (DETR model)
- mask2former —
Mask2FormerForUniversalSegmentation(Mask2Former model) - maskformer —
MaskFormerForInstanceSegmentation(MaskFormer model) - oneformer —
OneFormerForUniversalSegmentation(OneFormer model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForUniversalSegmentation
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForUniversalSegmentation.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForUniversalSegmentation.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForUniversalSegmentation.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )AutoModelForZeroShotImageClassification
This is a generic model class that will be instantiated as one of the model classes of the library (with a zero-shot image classification head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- AlignConfig configuration class: AlignModel (ALIGN model)
- AltCLIPConfig configuration class: AltCLIPModel (AltCLIP model)
- BlipConfig configuration class: BlipModel (BLIP model)
- CLIPConfig configuration class: CLIPModel (CLIP model)
- CLIPSegConfig configuration class: CLIPSegModel (CLIPSeg model)
- ChineseCLIPConfig configuration class: ChineseCLIPModel (Chinese-CLIP model)
SiglipConfigconfiguration class:SiglipModel(SigLIP model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a zero-shot image classification head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a zero-shot image classification head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- align — AlignModel (ALIGN model)
- altclip — AltCLIPModel (AltCLIP model)
- blip — BlipModel (BLIP model)
- chinese_clip — ChineseCLIPModel (Chinese-CLIP model)
- clip — CLIPModel (CLIP model)
- clipseg — CLIPSegModel (CLIPSeg model)
- siglip —
SiglipModel(SigLIP model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForZeroShotImageClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForZeroShotImageClassification.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForZeroShotImageClassification.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForZeroShotImageClassification.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )TFAutoModelForZeroShotImageClassification
This is a generic model class that will be instantiated as one of the model classes of the library (with a zero-shot image classification head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- BlipConfig configuration class: TFBlipModel (BLIP model)
- CLIPConfig configuration class: TFCLIPModel (CLIP model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a zero-shot image classification head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a zero-shot image classification head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- blip — TFBlipModel (BLIP model)
- clip — TFCLIPModel (CLIP model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForZeroShotImageClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForZeroShotImageClassification.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = TFAutoModelForZeroShotImageClassification.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = TFAutoModelForZeroShotImageClassification.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )AutoModelForZeroShotObjectDetection
This is a generic model class that will be instantiated as one of the model classes of the library (with a zero-shot object detection head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
GroundingDinoConfigconfiguration class:GroundingDinoForObjectDetection(Grounding DINO model)OwlViTConfigconfiguration class:OwlViTForObjectDetection(OWL-ViT model)Owlv2Configconfiguration class:Owlv2ForObjectDetection(OWLv2 model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a zero-shot object detection head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a zero-shot object detection head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- grounding-dino —
GroundingDinoForObjectDetection(Grounding DINO model) - owlv2 —
Owlv2ForObjectDetection(OWLv2 model) - owlvit —
OwlViTForObjectDetection(OWL-ViT model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForZeroShotObjectDetection
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForZeroShotObjectDetection.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForZeroShotObjectDetection.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForZeroShotObjectDetection.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )Audio
以下の自動クラスは、次の音声タスクに利用可能です。
AutoModelForAudioClassification
This is a generic model class that will be instantiated as one of the model classes of the library (with a audio classification head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- ASTConfig configuration class: ASTForAudioClassification (Audio Spectrogram Transformer model)
- Data2VecAudioConfig configuration class: Data2VecAudioForSequenceClassification (Data2VecAudio model)
HubertConfigconfiguration class:HubertForSequenceClassification(Hubert model)SEWConfigconfiguration class:SEWForSequenceClassification(SEW model)SEWDConfigconfiguration class:SEWDForSequenceClassification(SEW-D model)UniSpeechConfigconfiguration class:UniSpeechForSequenceClassification(UniSpeech model)UniSpeechSatConfigconfiguration class:UniSpeechSatForSequenceClassification(UniSpeechSat model)Wav2Vec2BertConfigconfiguration class:Wav2Vec2BertForSequenceClassification(Wav2Vec2-BERT model)Wav2Vec2Configconfiguration class:Wav2Vec2ForSequenceClassification(Wav2Vec2 model)Wav2Vec2ConformerConfigconfiguration class:Wav2Vec2ConformerForSequenceClassification(Wav2Vec2-Conformer model)WavLMConfigconfiguration class:WavLMForSequenceClassification(WavLM model)WhisperConfigconfiguration class:WhisperForAudioClassification(Whisper model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a audio classification head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a audio classification head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- audio-spectrogram-transformer — ASTForAudioClassification (Audio Spectrogram Transformer model)
- data2vec-audio — Data2VecAudioForSequenceClassification (Data2VecAudio model)
- hubert —
HubertForSequenceClassification(Hubert model) - sew —
SEWForSequenceClassification(SEW model) - sew-d —
SEWDForSequenceClassification(SEW-D model) - unispeech —
UniSpeechForSequenceClassification(UniSpeech model) - unispeech-sat —
UniSpeechSatForSequenceClassification(UniSpeechSat model) - wav2vec2 —
Wav2Vec2ForSequenceClassification(Wav2Vec2 model) - wav2vec2-bert —
Wav2Vec2BertForSequenceClassification(Wav2Vec2-BERT model) - wav2vec2-conformer —
Wav2Vec2ConformerForSequenceClassification(Wav2Vec2-Conformer model) - wavlm —
WavLMForSequenceClassification(WavLM model) - whisper —
WhisperForAudioClassification(Whisper model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForAudioClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForAudioClassification.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForAudioClassification.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForAudioClassification.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )AutoModelForAudioFrameClassification
This is a generic model class that will be instantiated as one of the model classes of the library (with a audio classification head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
Wav2Vec2Configconfiguration class:TFWav2Vec2ForSequenceClassification(Wav2Vec2 model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a audio classification head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a audio classification head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- wav2vec2 —
TFWav2Vec2ForSequenceClassification(Wav2Vec2 model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForAudioClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForAudioClassification.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = TFAutoModelForAudioClassification.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = TFAutoModelForAudioClassification.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )TFAutoModelForAudioFrameClassification
This is a generic model class that will be instantiated as one of the model classes of the library (with a audio frame (token) classification head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- Data2VecAudioConfig configuration class: Data2VecAudioForAudioFrameClassification (Data2VecAudio model)
UniSpeechSatConfigconfiguration class:UniSpeechSatForAudioFrameClassification(UniSpeechSat model)Wav2Vec2BertConfigconfiguration class:Wav2Vec2BertForAudioFrameClassification(Wav2Vec2-BERT model)Wav2Vec2Configconfiguration class:Wav2Vec2ForAudioFrameClassification(Wav2Vec2 model)Wav2Vec2ConformerConfigconfiguration class:Wav2Vec2ConformerForAudioFrameClassification(Wav2Vec2-Conformer model)WavLMConfigconfiguration class:WavLMForAudioFrameClassification(WavLM model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a audio frame (token) classification head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a audio frame (token) classification head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- data2vec-audio — Data2VecAudioForAudioFrameClassification (Data2VecAudio model)
- unispeech-sat —
UniSpeechSatForAudioFrameClassification(UniSpeechSat model) - wav2vec2 —
Wav2Vec2ForAudioFrameClassification(Wav2Vec2 model) - wav2vec2-bert —
Wav2Vec2BertForAudioFrameClassification(Wav2Vec2-BERT model) - wav2vec2-conformer —
Wav2Vec2ConformerForAudioFrameClassification(Wav2Vec2-Conformer model) - wavlm —
WavLMForAudioFrameClassification(WavLM model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForAudioFrameClassification
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForAudioFrameClassification.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForAudioFrameClassification.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForAudioFrameClassification.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )AutoModelForCTC
This is a generic model class that will be instantiated as one of the model classes of the library (with a connectionist temporal classification head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- Data2VecAudioConfig configuration class: Data2VecAudioForCTC (Data2VecAudio model)
HubertConfigconfiguration class:HubertForCTC(Hubert model)MCTCTConfigconfiguration class:MCTCTForCTC(M-CTC-T model)SEWConfigconfiguration class:SEWForCTC(SEW model)SEWDConfigconfiguration class:SEWDForCTC(SEW-D model)UniSpeechConfigconfiguration class:UniSpeechForCTC(UniSpeech model)UniSpeechSatConfigconfiguration class:UniSpeechSatForCTC(UniSpeechSat model)Wav2Vec2BertConfigconfiguration class:Wav2Vec2BertForCTC(Wav2Vec2-BERT model)Wav2Vec2Configconfiguration class:Wav2Vec2ForCTC(Wav2Vec2 model)Wav2Vec2ConformerConfigconfiguration class:Wav2Vec2ConformerForCTC(Wav2Vec2-Conformer model)WavLMConfigconfiguration class:WavLMForCTC(WavLM model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a connectionist temporal classification head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a connectionist temporal classification head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- data2vec-audio — Data2VecAudioForCTC (Data2VecAudio model)
- hubert —
HubertForCTC(Hubert model) - mctct —
MCTCTForCTC(M-CTC-T model) - sew —
SEWForCTC(SEW model) - sew-d —
SEWDForCTC(SEW-D model) - unispeech —
UniSpeechForCTC(UniSpeech model) - unispeech-sat —
UniSpeechSatForCTC(UniSpeechSat model) - wav2vec2 —
Wav2Vec2ForCTC(Wav2Vec2 model) - wav2vec2-bert —
Wav2Vec2BertForCTC(Wav2Vec2-BERT model) - wav2vec2-conformer —
Wav2Vec2ConformerForCTC(Wav2Vec2-Conformer model) - wavlm —
WavLMForCTC(WavLM model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForCTC
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForCTC.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForCTC.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForCTC.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )AutoModelForSpeechSeq2Seq
This is a generic model class that will be instantiated as one of the model classes of the library (with a sequence-to-sequence speech-to-text modeling head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
Pop2PianoConfigconfiguration class:Pop2PianoForConditionalGeneration(Pop2Piano model)SeamlessM4TConfigconfiguration class:SeamlessM4TForSpeechToText(SeamlessM4T model)SeamlessM4Tv2Configconfiguration class:SeamlessM4Tv2ForSpeechToText(SeamlessM4Tv2 model)Speech2TextConfigconfiguration class:Speech2TextForConditionalGeneration(Speech2Text model)SpeechEncoderDecoderConfigconfiguration class:SpeechEncoderDecoderModel(Speech Encoder decoder model)SpeechT5Configconfiguration class:SpeechT5ForSpeechToText(SpeechT5 model)WhisperConfigconfiguration class:WhisperForConditionalGeneration(Whisper model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a sequence-to-sequence speech-to-text modeling head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a sequence-to-sequence speech-to-text modeling head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- pop2piano —
Pop2PianoForConditionalGeneration(Pop2Piano model) - seamless_m4t —
SeamlessM4TForSpeechToText(SeamlessM4T model) - seamless_m4t_v2 —
SeamlessM4Tv2ForSpeechToText(SeamlessM4Tv2 model) - speech-encoder-decoder —
SpeechEncoderDecoderModel(Speech Encoder decoder model) - speech_to_text —
Speech2TextForConditionalGeneration(Speech2Text model) - speecht5 —
SpeechT5ForSpeechToText(SpeechT5 model) - whisper —
WhisperForConditionalGeneration(Whisper model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForSpeechSeq2Seq
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForSpeechSeq2Seq.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForSpeechSeq2Seq.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForSpeechSeq2Seq.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )TFAutoModelForSpeechSeq2Seq
This is a generic model class that will be instantiated as one of the model classes of the library (with a sequence-to-sequence speech-to-text modeling head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
Speech2TextConfigconfiguration class:TFSpeech2TextForConditionalGeneration(Speech2Text model)WhisperConfigconfiguration class:TFWhisperForConditionalGeneration(Whisper model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a sequence-to-sequence speech-to-text modeling head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a sequence-to-sequence speech-to-text modeling head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- speech_to_text —
TFSpeech2TextForConditionalGeneration(Speech2Text model) - whisper —
TFWhisperForConditionalGeneration(Whisper model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForSpeechSeq2Seq
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForSpeechSeq2Seq.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = TFAutoModelForSpeechSeq2Seq.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = TFAutoModelForSpeechSeq2Seq.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )FlaxAutoModelForSpeechSeq2Seq
This is a generic model class that will be instantiated as one of the model classes of the library (with a sequence-to-sequence speech-to-text modeling head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
SpeechEncoderDecoderConfigconfiguration class:FlaxSpeechEncoderDecoderModel(Speech Encoder decoder model)WhisperConfigconfiguration class:FlaxWhisperForConditionalGeneration(Whisper model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a sequence-to-sequence speech-to-text modeling head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a sequence-to-sequence speech-to-text modeling head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- speech-encoder-decoder —
FlaxSpeechEncoderDecoderModel(Speech Encoder decoder model) - whisper —
FlaxWhisperForConditionalGeneration(Whisper model)
Examples:
>>> from transformers import AutoConfig, FlaxAutoModelForSpeechSeq2Seq
>>> # Download model and configuration from huggingface.co and cache.
>>> model = FlaxAutoModelForSpeechSeq2Seq.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = FlaxAutoModelForSpeechSeq2Seq.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = FlaxAutoModelForSpeechSeq2Seq.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )AutoModelForAudioXVector
This is a generic model class that will be instantiated as one of the model classes of the library (with a audio retrieval via x-vector head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- Data2VecAudioConfig configuration class: Data2VecAudioForXVector (Data2VecAudio model)
UniSpeechSatConfigconfiguration class:UniSpeechSatForXVector(UniSpeechSat model)Wav2Vec2BertConfigconfiguration class:Wav2Vec2BertForXVector(Wav2Vec2-BERT model)Wav2Vec2Configconfiguration class:Wav2Vec2ForXVector(Wav2Vec2 model)Wav2Vec2ConformerConfigconfiguration class:Wav2Vec2ConformerForXVector(Wav2Vec2-Conformer model)WavLMConfigconfiguration class:WavLMForXVector(WavLM model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a audio retrieval via x-vector head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a audio retrieval via x-vector head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- data2vec-audio — Data2VecAudioForXVector (Data2VecAudio model)
- unispeech-sat —
UniSpeechSatForXVector(UniSpeechSat model) - wav2vec2 —
Wav2Vec2ForXVector(Wav2Vec2 model) - wav2vec2-bert —
Wav2Vec2BertForXVector(Wav2Vec2-BERT model) - wav2vec2-conformer —
Wav2Vec2ConformerForXVector(Wav2Vec2-Conformer model) - wavlm —
WavLMForXVector(WavLM model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForAudioXVector
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForAudioXVector.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForAudioXVector.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForAudioXVector.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )AutoModelForTextToSpectrogram
AutoModelForTextToWaveform
Multimodal
以下の自動クラスは、次のマルチモーダルタスクに利用可能です。
AutoModelForTableQuestionAnswering
This is a generic model class that will be instantiated as one of the model classes of the library (with a table question answering head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
TapasConfigconfiguration class:TapasForQuestionAnswering(TAPAS model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a table question answering head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a table question answering head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- tapas —
TapasForQuestionAnswering(TAPAS model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForTableQuestionAnswering
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForTableQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq")
>>> # Update configuration during loading
>>> model = AutoModelForTableQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/tapas_tf_model_config.json")
>>> model = AutoModelForTableQuestionAnswering.from_pretrained(
... "./tf_model/tapas_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )TFAutoModelForTableQuestionAnswering
This is a generic model class that will be instantiated as one of the model classes of the library (with a table question answering head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
TapasConfigconfiguration class:TFTapasForQuestionAnswering(TAPAS model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a table question answering head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a table question answering head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- tapas —
TFTapasForQuestionAnswering(TAPAS model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForTableQuestionAnswering
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForTableQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq")
>>> # Update configuration during loading
>>> model = TFAutoModelForTableQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/tapas_pt_model_config.json")
>>> model = TFAutoModelForTableQuestionAnswering.from_pretrained(
... "./pt_model/tapas_pytorch_model.bin", from_pt=True, config=config
... )AutoModelForDocumentQuestionAnswering
This is a generic model class that will be instantiated as one of the model classes of the library (with a document question answering head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
LayoutLMConfigconfiguration class:LayoutLMForQuestionAnswering(LayoutLM model)LayoutLMv2Configconfiguration class:LayoutLMv2ForQuestionAnswering(LayoutLMv2 model)LayoutLMv3Configconfiguration class:LayoutLMv3ForQuestionAnswering(LayoutLMv3 model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a document question answering head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
Examples:
>>> from transformers import AutoConfig, AutoModelForDocumentQuestionAnswering
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained("impira/layoutlm-document-qa", revision="52e01b3")
>>> model = AutoModelForDocumentQuestionAnswering.from_config(config)from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a document question answering head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- layoutlm —
LayoutLMForQuestionAnswering(LayoutLM model) - layoutlmv2 —
LayoutLMv2ForQuestionAnswering(LayoutLMv2 model) - layoutlmv3 —
LayoutLMv3ForQuestionAnswering(LayoutLMv3 model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForDocumentQuestionAnswering
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForDocumentQuestionAnswering.from_pretrained("impira/layoutlm-document-qa", revision="52e01b3")
>>> # Update configuration during loading
>>> model = AutoModelForDocumentQuestionAnswering.from_pretrained("impira/layoutlm-document-qa", revision="52e01b3", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/layoutlm_tf_model_config.json")
>>> model = AutoModelForDocumentQuestionAnswering.from_pretrained(
... "./tf_model/layoutlm_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )TFAutoModelForDocumentQuestionAnswering
This is a generic model class that will be instantiated as one of the model classes of the library (with a document question answering head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
LayoutLMConfigconfiguration class:TFLayoutLMForQuestionAnswering(LayoutLM model)LayoutLMv3Configconfiguration class:TFLayoutLMv3ForQuestionAnswering(LayoutLMv3 model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a document question answering head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
Examples:
>>> from transformers import AutoConfig, TFAutoModelForDocumentQuestionAnswering
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained("impira/layoutlm-document-qa", revision="52e01b3")
>>> model = TFAutoModelForDocumentQuestionAnswering.from_config(config)from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a document question answering head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- layoutlm —
TFLayoutLMForQuestionAnswering(LayoutLM model) - layoutlmv3 —
TFLayoutLMv3ForQuestionAnswering(LayoutLMv3 model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForDocumentQuestionAnswering
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForDocumentQuestionAnswering.from_pretrained("impira/layoutlm-document-qa", revision="52e01b3")
>>> # Update configuration during loading
>>> model = TFAutoModelForDocumentQuestionAnswering.from_pretrained("impira/layoutlm-document-qa", revision="52e01b3", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/layoutlm_pt_model_config.json")
>>> model = TFAutoModelForDocumentQuestionAnswering.from_pretrained(
... "./pt_model/layoutlm_pytorch_model.bin", from_pt=True, config=config
... )AutoModelForVisualQuestionAnswering
This is a generic model class that will be instantiated as one of the model classes of the library (with a visual question answering head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- Blip2Config configuration class: Blip2ForConditionalGeneration (BLIP-2 model)
- BlipConfig configuration class: BlipForQuestionAnswering (BLIP model)
ViltConfigconfiguration class:ViltForQuestionAnswering(ViLT model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a visual question answering head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a visual question answering head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- blip — BlipForQuestionAnswering (BLIP model)
- blip-2 — Blip2ForConditionalGeneration (BLIP-2 model)
- vilt —
ViltForQuestionAnswering(ViLT model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForVisualQuestionAnswering
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForVisualQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
>>> # Update configuration during loading
>>> model = AutoModelForVisualQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/vilt_tf_model_config.json")
>>> model = AutoModelForVisualQuestionAnswering.from_pretrained(
... "./tf_model/vilt_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )AutoModelForVision2Seq
This is a generic model class that will be instantiated as one of the model classes of the library (with a vision-to-text modeling head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- Blip2Config configuration class: Blip2ForConditionalGeneration (BLIP-2 model)
- BlipConfig configuration class: BlipForConditionalGeneration (BLIP model)
ChameleonConfigconfiguration class:ChameleonForConditionalGeneration(Chameleon model)GitConfigconfiguration class:GitForCausalLM(GIT model)Idefics2Configconfiguration class:Idefics2ForConditionalGeneration(Idefics2 model)InstructBlipConfigconfiguration class:InstructBlipForConditionalGeneration(InstructBLIP model)InstructBlipVideoConfigconfiguration class:InstructBlipVideoForConditionalGeneration(InstructBlipVideo model)Kosmos2Configconfiguration class:Kosmos2ForConditionalGeneration(KOSMOS-2 model)LlavaConfigconfiguration class:LlavaForConditionalGeneration(LLaVa model)LlavaNextConfigconfiguration class:LlavaNextForConditionalGeneration(LLaVA-NeXT model)LlavaNextVideoConfigconfiguration class:LlavaNextVideoForConditionalGeneration(LLaVa-NeXT-Video model)PaliGemmaConfigconfiguration class:PaliGemmaForConditionalGeneration(PaliGemma model)Pix2StructConfigconfiguration class:Pix2StructForConditionalGeneration(Pix2Struct model)VideoLlavaConfigconfiguration class:VideoLlavaForConditionalGeneration(VideoLlava model)VipLlavaConfigconfiguration class:VipLlavaForConditionalGeneration(VipLlava model)VisionEncoderDecoderConfigconfiguration class:VisionEncoderDecoderModel(Vision Encoder decoder model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a vision-to-text modeling head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- state_dict (Dict[str, torch.Tensor], optional) —
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using save_pretrained() and from_pretrained() is not a simpler option.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_tf (
bool, optional, defaults toFalse) — Load the model weights from a TensorFlow checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a vision-to-text modeling head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- blip — BlipForConditionalGeneration (BLIP model)
- blip-2 — Blip2ForConditionalGeneration (BLIP-2 model)
- chameleon —
ChameleonForConditionalGeneration(Chameleon model) - git —
GitForCausalLM(GIT model) - idefics2 —
Idefics2ForConditionalGeneration(Idefics2 model) - instructblip —
InstructBlipForConditionalGeneration(InstructBLIP model) - instructblipvideo —
InstructBlipVideoForConditionalGeneration(InstructBlipVideo model) - kosmos-2 —
Kosmos2ForConditionalGeneration(KOSMOS-2 model) - llava —
LlavaForConditionalGeneration(LLaVa model) - llava-next-video —
LlavaNextVideoForConditionalGeneration(LLaVa-NeXT-Video model) - llava_next —
LlavaNextForConditionalGeneration(LLaVA-NeXT model) - paligemma —
PaliGemmaForConditionalGeneration(PaliGemma model) - pix2struct —
Pix2StructForConditionalGeneration(Pix2Struct model) - video_llava —
VideoLlavaForConditionalGeneration(VideoLlava model) - vipllava —
VipLlavaForConditionalGeneration(VipLlava model) - vision-encoder-decoder —
VisionEncoderDecoderModel(Vision Encoder decoder model)
The model is set in evaluation mode by default using model.eval() (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with model.train()
Examples:
>>> from transformers import AutoConfig, AutoModelForVision2Seq
>>> # Download model and configuration from huggingface.co and cache.
>>> model = AutoModelForVision2Seq.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = AutoModelForVision2Seq.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/bert_tf_model_config.json")
>>> model = AutoModelForVision2Seq.from_pretrained(
... "./tf_model/bert_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )TFAutoModelForVision2Seq
This is a generic model class that will be instantiated as one of the model classes of the library (with a vision-to-text modeling head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
- BlipConfig configuration class: TFBlipForConditionalGeneration (BLIP model)
VisionEncoderDecoderConfigconfiguration class:TFVisionEncoderDecoderModel(Vision Encoder decoder model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a vision-to-text modeling head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a vision-to-text modeling head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- blip — TFBlipForConditionalGeneration (BLIP model)
- vision-encoder-decoder —
TFVisionEncoderDecoderModel(Vision Encoder decoder model)
Examples:
>>> from transformers import AutoConfig, TFAutoModelForVision2Seq
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForVision2Seq.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = TFAutoModelForVision2Seq.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = TFAutoModelForVision2Seq.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )FlaxAutoModelForVision2Seq
This is a generic model class that will be instantiated as one of the model classes of the library (with a vision-to-text modeling head) when created with the from_pretrained() class method or the from_config() class method.
This class cannot be instantiated directly using __init__() (throws an error).
from_config
< source >( **kwargs )
Parameters
- config (PretrainedConfig) —
The model class to instantiate is selected based on the configuration class:
VisionEncoderDecoderConfigconfiguration class:FlaxVisionEncoderDecoderModel(Vision Encoder decoder model)
- attn_implementation (
str, optional) — The attention implementation to use in the model (if relevant). Can be any of"eager"(manual implementation of the attention),"sdpa"(usingF.scaled_dot_product_attention), or"flash_attention_2"(using Dao-AILab/flash-attention). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"implementation.
Instantiates one of the model classes of the library (with a vision-to-text modeling head) from a configuration.
Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use from_pretrained() to load the model weights.
from_pretrained
< source >( *model_args **kwargs )
Parameters
- pretrained_model_name_or_path (
stroros.PathLike) — Can be either:- A string, the model id of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a directory containing model weights saved using
save_pretrained(), e.g.,
./my_model_directory/. - A path or url to a PyTorch state_dict save file (e.g,
./pt_model/pytorch_model.bin). In this case,from_ptshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
- model_args (additional positional arguments, optional) —
Will be passed along to the underlying model
__init__()method. - config (PretrainedConfig, optional) —
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the model id string of a pretrained model).
- The model was saved using save_pretrained() and is reloaded by supplying the save directory.
- The model is loaded by supplying a local directory as
pretrained_model_name_or_pathand a configuration JSON file named config.json is found in the directory.
- cache_dir (
stroros.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - from_pt (
bool, optional, defaults toFalse) — Load the model weights from a PyTorch checkpoint save file (see docstring ofpretrained_model_name_or_pathargument). - force_download (
bool, optional, defaults toFalse) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. - proxies (
Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. - output_loading_info(
bool, optional, defaults toFalse) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(
bool, optional, defaults toFalse) — Whether or not to only look at local files (e.g., not try downloading the model). - revision (
str, optional, defaults to"main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - trust_remote_code (
bool, optional, defaults toFalse) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set toTruefor repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. - code_revision (
str, optional, defaults to"main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevisioncan be any identifier allowed by git. - kwargs (additional keyword arguments, optional) —
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True). Behaves differently depending on whether aconfigis provided or automatically loaded:- If a configuration is provided with
config,**kwargswill be directly passed to the underlying model’s__init__method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided,
kwargswill be first passed to the configuration class initialization function (from_pretrained()). Each key ofkwargsthat corresponds to a configuration attribute will be used to override said attribute with the suppliedkwargsvalue. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s__init__function.
- If a configuration is provided with
Instantiate one of the model classes of the library (with a vision-to-text modeling head) from a pretrained model.
The model class to instantiate is selected based on the model_type property of the config object (either
passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by
falling back to using pattern matching on pretrained_model_name_or_path:
- vision-encoder-decoder —
FlaxVisionEncoderDecoderModel(Vision Encoder decoder model)
Examples:
>>> from transformers import AutoConfig, FlaxAutoModelForVision2Seq
>>> # Download model and configuration from huggingface.co and cache.
>>> model = FlaxAutoModelForVision2Seq.from_pretrained("google-bert/bert-base-cased")
>>> # Update configuration during loading
>>> model = FlaxAutoModelForVision2Seq.from_pretrained("google-bert/bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = FlaxAutoModelForVision2Seq.from_pretrained(
... "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )