Transformers documentation

BertJapanese

You are viewing v4.40.2 version. A newer version v4.46.3 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

BertJapanese

Overview

The BERT models trained on Japanese text.

There are models with two different tokenization methods:

  • Tokenize with MeCab and WordPiece. This requires some extra dependencies, fugashi which is a wrapper around MeCab.
  • Tokenize into characters.

To use MecabTokenizer, you should pip install transformers["ja"] (or pip install -e .["ja"] if you install from source) to install dependencies.

See details on cl-tohoku repository.

Example of using a model with MeCab and WordPiece tokenization:

>>> import torch
>>> from transformers import AutoModel, AutoTokenizer

>>> bertjapanese = AutoModel.from_pretrained("cl-tohoku/bert-base-japanese")
>>> tokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese")

>>> ## Input Japanese Text
>>> line = "吾輩は猫である。"

>>> inputs = tokenizer(line, return_tensors="pt")

>>> print(tokenizer.decode(inputs["input_ids"][0]))
[CLS] 吾輩 は 猫 で ある 。 [SEP]

>>> outputs = bertjapanese(**inputs)

Example of using a model with Character tokenization:

>>> bertjapanese = AutoModel.from_pretrained("cl-tohoku/bert-base-japanese-char")
>>> tokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese-char")

>>> ## Input Japanese Text
>>> line = "吾輩は猫である。"

>>> inputs = tokenizer(line, return_tensors="pt")

>>> print(tokenizer.decode(inputs["input_ids"][0]))
[CLS] 吾 輩 は 猫 で あ る 。 [SEP]

>>> outputs = bertjapanese(**inputs)

This model was contributed by cl-tohoku.

This implementation is the same as BERT, except for tokenization method. Refer to BERT documentation for API reference information.

BertJapaneseTokenizer

class transformers.BertJapaneseTokenizer

< >

( vocab_file spm_file = None do_lower_case = False do_word_tokenize = True do_subword_tokenize = True word_tokenizer_type = 'basic' subword_tokenizer_type = 'wordpiece' never_split = None unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' mecab_kwargs = None sudachi_kwargs = None jumanpp_kwargs = None **kwargs )

Parameters

  • vocab_file (str) — Path to a one-wordpiece-per-line vocabulary file.
  • spm_file (str, optional) — Path to SentencePiece file (generally has a .spm or .model extension) that contains the vocabulary.
  • do_lower_case (bool, optional, defaults to True) — Whether to lower case the input. Only has an effect when do_basic_tokenize=True.
  • do_word_tokenize (bool, optional, defaults to True) — Whether to do word tokenization.
  • do_subword_tokenize (bool, optional, defaults to True) — Whether to do subword tokenization.
  • word_tokenizer_type (str, optional, defaults to "basic") — Type of word tokenizer. Choose from [“basic”, “mecab”, “sudachi”, “jumanpp”].
  • subword_tokenizer_type (str, optional, defaults to "wordpiece") — Type of subword tokenizer. Choose from [“wordpiece”, “character”, “sentencepiece”,].
  • mecab_kwargs (dict, optional) — Dictionary passed to the MecabTokenizer constructor.
  • sudachi_kwargs (dict, optional) — Dictionary passed to the SudachiTokenizer constructor.
  • jumanpp_kwargs (dict, optional) — Dictionary passed to the JumanppTokenizer constructor.

Construct a BERT tokenizer for Japanese text.

This tokenizer inherits from PreTrainedTokenizer which contains most of the main methods. Users should refer to: this superclass for more information regarding those methods.

build_inputs_with_special_tokens

< >

( token_ids_0: List token_ids_1: Optional = None ) List[int]

Parameters

  • token_ids_0 (List[int]) — List of IDs to which the special tokens will be added.
  • token_ids_1 (List[int], optional) — Optional second list of IDs for sequence pairs.

Returns

List[int]

List of input IDs with the appropriate special tokens.

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format:

  • single sequence: [CLS] X [SEP]
  • pair of sequences: [CLS] A [SEP] B [SEP]

convert_tokens_to_string

< >

( tokens )

Converts a sequence of tokens (string) in a single string.

create_token_type_ids_from_sequences

< >

( token_ids_0: List token_ids_1: Optional = None ) List[int]

Parameters

  • token_ids_0 (List[int]) — List of IDs.
  • token_ids_1 (List[int], optional) — Optional second list of IDs for sequence pairs.

Returns

List[int]

List of token type IDs according to the given sequence(s).

Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence

pair mask has the following format:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

If token_ids_1 is None, this method only returns the first portion of the mask (0s).

get_special_tokens_mask

< >

( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) List[int]

Parameters

  • token_ids_0 (List[int]) — List of IDs.
  • token_ids_1 (List[int], optional) — Optional second list of IDs for sequence pairs.
  • already_has_special_tokens (bool, optional, defaults to False) — Whether or not the token list is already formatted with special tokens for the model.

Returns

List[int]

A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.

Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model method.

< > Update on GitHub