You are viewing v4.38.1 version.
A newer version
v4.46.3 is available.
BERTology
BERT와 같은 대규모 트랜스포머의 내부 동작을 조사하는 연구 분야가 점점 더 중요해지고 있습니다. 혹자는 “BERTology”라 칭하기도 합니다. 이 분야의 좋은 예시는 다음과 같습니다:
- BERT는 고전적인 NLP 파이프라인의 재발견 - Ian Tenney, Dipanjan Das, Ellie Pavlick: https://arxiv.org/abs/1905.05950
- 16개의 헤드가 정말로 1개보다 나은가? - Paul Michel, Omer Levy, Graham Neubig: https://arxiv.org/abs/1905.10650
- BERT는 무엇을 보는가? BERT의 어텐션 분석 - Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D. Manning: https://arxiv.org/abs/1906.04341
- CAT-probing: 프로그래밍 언어에 대해 사전훈련된 모델이 어떻게 코드 구조를 보는지 알아보기 위한 메트릭 기반 접근 방법: https://arxiv.org/abs/2210.04633
우리는 이 새로운 연구 분야의 발전을 돕기 위해, BERT/GPT/GPT-2 모델에 내부 표현을 살펴볼 수 있는 몇 가지 기능을 추가했습니다. 이 기능들은 주로 Paul Michel의 훌륭한 작업을 참고하여 개발되었습니다 (https://arxiv.org/abs/1905.10650):
- BERT/GPT/GPT-2의 모든 은닉 상태에 접근하기,
- BERT/GPT/GPT-2의 각 헤드의 모든 어텐션 가중치에 접근하기,
- 헤드의 출력 값과 그래디언트를 검색하여 헤드 중요도 점수를 계산하고 https://arxiv.org/abs/1905.10650에서 설명된 대로 헤드를 제거하는 기능을 제공합니다.
이러한 기능들을 이해하고 직접 사용해볼 수 있도록 bertology.py 예제 스크립트를 추가했습니다. 이 예제 스크립트에서는 GLUE에 대해 사전훈련된 모델에서 정보를 추출하고 모델을 가지치기(prune)해봅니다.