BARTpho
Overview
BARTpho モデルは、Nguyen Luong Tran、Duong Minh Le、Dat Quoc Nguyen によって BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnam で提案されました。
論文の要約は次のとおりです。
BARTpho には、BARTpho_word と BARTpho_syllable の 2 つのバージョンがあり、初の公開された大規模な単一言語です。 ベトナム語用に事前トレーニングされたシーケンスツーシーケンス モデル。当社の BARTpho は「大規模な」アーキテクチャと事前トレーニングを使用します シーケンス間ノイズ除去モデル BART のスキームなので、生成 NLP タスクに特に適しています。実験 ベトナム語テキスト要約の下流タスクでは、自動評価と人間による評価の両方で、BARTpho が 強力なベースライン mBART を上回り、最先端の性能を向上させます。将来を容易にするためにBARTphoをリリースします 生成的なベトナム語 NLP タスクの研究と応用。
このモデルは dqnguyen によって提供されました。元のコードは こちら にあります。
Usage example
>>> import torch
>>> from transformers import AutoModel, AutoTokenizer
>>> bartpho = AutoModel.from_pretrained("vinai/bartpho-syllable")
>>> tokenizer = AutoTokenizer.from_pretrained("vinai/bartpho-syllable")
>>> line = "Chúng tôi là những nghiên cứu viên."
>>> input_ids = tokenizer(line, return_tensors="pt")
>>> with torch.no_grad():
... features = bartpho(**input_ids) # Models outputs are now tuples
>>> # With TensorFlow 2.0+:
>>> from transformers import TFAutoModel
>>> bartpho = TFAutoModel.from_pretrained("vinai/bartpho-syllable")
>>> input_ids = tokenizer(line, return_tensors="tf")
>>> features = bartpho(**input_ids)
Usage tips
- mBARTに続いて、BARTphoはBARTの「大規模な」アーキテクチャを使用し、その上に追加の層正規化層を備えています。 エンコーダとデコーダの両方。したがって、BART のドキュメント の使用例は、使用に適応する場合に使用されます。 BARTpho を使用する場合は、BART に特化したクラスを mBART に特化した対応するクラスに置き換えることによって調整する必要があります。 例えば:
>>> from transformers import MBartForConditionalGeneration
>>> bartpho = MBartForConditionalGeneration.from_pretrained("vinai/bartpho-syllable")
>>> TXT = "Chúng tôi là <mask> nghiên cứu viên."
>>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"]
>>> logits = bartpho(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> print(tokenizer.decode(predictions).split())
- この実装はトークン化のみを目的としています。
monolingual_vocab_file
はベトナム語に特化した型で構成されています 多言語 XLM-RoBERTa から利用できる事前トレーニング済み SentencePiece モデルvocab_file
から抽出されます。 他の言語 (サブワードにこの事前トレーニング済み多言語 SentencePiece モデルvocab_file
を使用する場合) セグメンテーションにより、独自の言語に特化したmonolingual_vocab_file
を使用して BartphoTokenizer を再利用できます。
BartphoTokenizer
class transformers.BartphoTokenizer
< source >( vocab_file monolingual_vocab_file bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' sp_model_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None **kwargs )
Parameters
- vocab_file (
str
) — Path to the vocabulary file. This vocabulary is the pre-trained SentencePiece model available from the multilingual XLM-RoBERTa, also used in mBART, consisting of 250K types. - monolingual_vocab_file (
str
) — Path to the monolingual vocabulary file. This monolingual vocabulary consists of Vietnamese-specialized types extracted from the multilingual vocabulary vocab_file of 250K types. - bos_token (
str
, optional, defaults to"<s>"
) — The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the
cls_token
. - eos_token (
str
, optional, defaults to"</s>"
) — The end of sequence token.When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the
sep_token
. - sep_token (
str
, optional, defaults to"</s>"
) — The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. - cls_token (
str
, optional, defaults to"<s>"
) — The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. - unk_token (
str
, optional, defaults to"<unk>"
) — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. - pad_token (
str
, optional, defaults to"<pad>"
) — The token used for padding, for example when batching sequences of different lengths. - mask_token (
str
, optional, defaults to"<mask>"
) — The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. - sp_model_kwargs (
dict
, optional) — Will be passed to theSentencePieceProcessor.__init__()
method. The Python wrapper for SentencePiece can be used, among other things, to set:-
enable_sampling
: Enable subword regularization. -
nbest_size
: Sampling parameters for unigram. Invalid for BPE-Dropout.nbest_size = {0,1}
: No sampling is performed.nbest_size > 1
: samples from the nbest_size results.nbest_size < 0
: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm.
-
alpha
: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout.
-
- sp_model (
SentencePieceProcessor
) — The SentencePiece processor that is used for every conversion (string, tokens and IDs).
Adapted from XLMRobertaTokenizer
. Based on SentencePiece.
This tokenizer inherits from PreTrainedTokenizer which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
build_inputs_with_special_tokens
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
- token_ids_0 (
List[int]
) — List of IDs to which the special tokens will be added. - token_ids_1 (
List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
List of input IDs with the appropriate special tokens.
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An BARTPho sequence has the following format:
- single sequence:
<s> X </s>
- pair of sequences:
<s> A </s></s> B </s>
Converts a sequence of tokens (strings for sub-words) in a single string.
create_token_type_ids_from_sequences
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BARTPho does not make use of token type ids, therefore a list of zeros is returned.
get_special_tokens_mask
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) → List[int]
Parameters
- token_ids_0 (
List[int]
) — List of IDs. - token_ids_1 (
List[int]
, optional) — Optional second list of IDs for sequence pairs. - already_has_special_tokens (
bool
, optional, defaults toFalse
) — Whether or not the token list is already formatted with special tokens for the model.
Returns
List[int]
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
method.