Language modeling
Language modeling tasks predicts words in a sentence, making these types of models great at generating text. You can use these models for creative applications like choosing your own text adventure or an intelligent coding assistant like Copilot or CodeParrot. There are two types of language modeling, causal and masked.
Causal language modeling predicts the next token in a sequence of tokens, and the model can only attend to tokens on the left. This means the model cannot see future tokens. GPT-2 is an example of a causal language model.
Masked language modeling predicts a masked token in a sequence, and the model can attend to tokens bidirectionally. This means the model has full access to the tokens on the left and right. BERT is an example of a masked language model.
This guide will show you how to:
- Finetune DistilGPT2 for causal language modeling and DistilRoBERTa for masked language modeling on the r/askscience subset of the ELI5 dataset.
- Use your finetuned model for inference.
You can finetune other architectures for language modeling such as GPT-Neo, GPT-J, and BERT, following the same steps in this guide! See the text generation task page and fill mask task page for more information about their associated models, datasets, and metrics.
Before you begin, make sure you have all the necessary libraries installed:
pip install transformers datasets evaluate
We encourage you to login to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to login:
>>> from huggingface_hub import notebook_login
>>> notebook_login()
Load ELI5 dataset
Start by loading a smaller subset of the r/askscience subset of the ELI5 dataset from the 🤗 Datasets library. This’ll give you a chance to experiment and make sure everythings works before spending more time training on the full dataset.
>>> from datasets import load_dataset
>>> eli5 = load_dataset("eli5", split="train_asks[:5000]")
Split the dataset’s train_asks
split into a train and test set with the train_test_split method:
>>> eli5 = eli5.train_test_split(test_size=0.2)
Then take a look at an example:
>>> eli5["train"][0]
{'answers': {'a_id': ['c3d1aib', 'c3d4lya'],
'score': [6, 3],
'text': ["The velocity needed to remain in orbit is equal to the square root of Newton's constant times the mass of earth divided by the distance from the center of the earth. I don't know the altitude of that specific mission, but they're usually around 300 km. That means he's going 7-8 km/s.\n\nIn space there are no other forces acting on either the shuttle or the guy, so they stay in the same position relative to each other. If he were to become unable to return to the ship, he would presumably run out of oxygen, or slowly fall into the atmosphere and burn up.",
"Hope you don't mind me asking another question, but why aren't there any stars visible in this photo?"]},
'answers_urls': {'url': []},
'document': '',
'q_id': 'nyxfp',
'selftext': '_URL_0_\n\nThis was on the front page earlier and I have a few questions about it. Is it possible to calculate how fast the astronaut would be orbiting the earth? Also how does he stay close to the shuttle so that he can return safely, i.e is he orbiting at the same speed and can therefore stay next to it? And finally if his propulsion system failed, would he eventually re-enter the atmosphere and presumably die?',
'selftext_urls': {'url': ['http://apod.nasa.gov/apod/image/1201/freeflyer_nasa_3000.jpg']},
'subreddit': 'askscience',
'title': 'Few questions about this space walk photograph.',
'title_urls': {'url': []}}
While this may look like a lot, you’re only really interested in the text
field. What’s cool about language modeling tasks is you don’t need labels (also known as an unsupervised task) because the next word is the label.
Preprocess
For causal language modeling, the next step is to load a DistilGPT2 tokenizer to process the text
subfield:
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
For masked language modeling, the next step is to load a DistilRoBERTa tokenizer to process the text
subfield:
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
You’ll notice from the example above, the text
field is actually nested inside answers
. This means you’ll need to extract the text
subfield from its nested structure with the flatten
method:
>>> eli5 = eli5.flatten()
>>> eli5["train"][0]
{'answers.a_id': ['c3d1aib', 'c3d4lya'],
'answers.score': [6, 3],
'answers.text': ["The velocity needed to remain in orbit is equal to the square root of Newton's constant times the mass of earth divided by the distance from the center of the earth. I don't know the altitude of that specific mission, but they're usually around 300 km. That means he's going 7-8 km/s.\n\nIn space there are no other forces acting on either the shuttle or the guy, so they stay in the same position relative to each other. If he were to become unable to return to the ship, he would presumably run out of oxygen, or slowly fall into the atmosphere and burn up.",
"Hope you don't mind me asking another question, but why aren't there any stars visible in this photo?"],
'answers_urls.url': [],
'document': '',
'q_id': 'nyxfp',
'selftext': '_URL_0_\n\nThis was on the front page earlier and I have a few questions about it. Is it possible to calculate how fast the astronaut would be orbiting the earth? Also how does he stay close to the shuttle so that he can return safely, i.e is he orbiting at the same speed and can therefore stay next to it? And finally if his propulsion system failed, would he eventually re-enter the atmosphere and presumably die?',
'selftext_urls.url': ['http://apod.nasa.gov/apod/image/1201/freeflyer_nasa_3000.jpg'],
'subreddit': 'askscience',
'title': 'Few questions about this space walk photograph.',
'title_urls.url': []}
Each subfield is now a separate column as indicated by the answers
prefix, and the text
field is a list now. Instead of tokenizing each sentence separately, convert the list to a string so you can jointly tokenize them.
Here is how you can create a preprocessing function to convert the list to a string, and truncate sequences to be no longer than DistilGPT2’s maximum input length:
>>> def preprocess_function(examples):
... return tokenizer([" ".join(x) for x in examples["answers.text"]], truncation=True)
To apply the preprocessing function over the entire dataset, use 🤗 Datasets with_transform method. You can speed up the map
function by setting batched=True
to process multiple elements of the dataset at once, and increasing the number of processes with num_proc
. Remove any columns you don’t need:
>>> tokenized_eli5 = eli5.map(
... preprocess_function,
... batched=True,
... num_proc=4,
... remove_columns=eli5["train"].column_names,
... )
Now you’ll need a second preprocessing function to capture text truncated from the lengthier examples to avoid losing any information. This preprocessing function should:
- Concatenate all the text.
- Split the concatenated text into smaller chunks defined by
block_size
.
>>> block_size = 128
>>> def group_texts(examples):
... concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
... total_length = len(concatenated_examples[list(examples.keys())[0]])
... total_length = (total_length // block_size) * block_size
... result = {
... k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
... for k, t in concatenated_examples.items()
... }
... result["labels"] = result["input_ids"].copy()
... return result
Apply the group_texts
function over the entire dataset:
>>> lm_dataset = tokenized_eli5.map(group_texts, batched=True, num_proc=4)
Now create a batch of examples using DataCollatorForLanguageModeling. It’s more efficient to dynamically pad the sentences to the longest length in a batch during collation, instead of padding the whole dataset to the maximium length.
For causal language modeling, use the end-of-sequence token as the padding token and set mlm=False
. This will use the inputs as labels shifted to the right by one element:
>>> from transformers import DataCollatorForLanguageModeling
>>> tokenizer.pad_token = tokenizer.eos_token
>>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
For masked language modeling, use the end-of-sequence token as the padding token and specify mlm_probability
to randomly mask tokens each time you iterate over the data:
>>> from transformers import DataCollatorForLanguageModeling
>>> tokenizer.pad_token = tokenizer.eos_token
>>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15)
For causal language modeling, use the end-of-sequence token as the padding token and set mlm=False
. This will use the inputs as labels shifted to the right by one element:
>>> from transformers import DataCollatorForLanguageModeling
>>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False, return_tensors="tf")
For masked language modeling, use the end-of-sequence token as the padding token and specify mlm_probability
to randomly mask tokens each time you iterate over the data:
>>> from transformers import DataCollatorForLanguageModeling
>>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15, return_tensors="tf")
Causal language modeling
Causal language models are frequently used for text generation. This section shows you how to finetune DistilGPT2 to generate new text.
Train
If you aren’t familiar with finetuning a model with the Trainer, take a look at the basic tutorial here!
>>> from transformers import AutoModelForCausalLM, TrainingArguments, Trainer
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
At this point, only three steps remain:
- Define your training hyperparameters in TrainingArguments. The only required parameter is
output_dir
which specifies where to save your model. You’ll push this model to the Hub by settingpush_to_hub=True
(you need to be signed in to Hugging Face to upload your model). - Pass the training arguments to Trainer along with the model, datasets, and data collator.
- Call train() to finetune your model.
>>> training_args = TrainingArguments(
... output_dir="my_awesome_eli5_clm-model",
... evaluation_strategy="epoch",
... learning_rate=2e-5,
... weight_decay=0.01,
... push_to_hub=True,
... )
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=lm_dataset["train"],
... eval_dataset=lm_dataset["test"],
... data_collator=data_collator,
... )
>>> trainer.train()
Once training is completed, use the evaluate() method to evaluate your model and get its perplexity:
>>> import math
>>> eval_results = trainer.evaluate()
>>> print(f"Perplexity: {math.exp(eval_results['eval_loss']):.2f}")
Perplexity: 49.61
Then share your model to the Hub with the push_to_hub() method so everyone can use your model:
>>> trainer.push_to_hub()
If you aren’t familiar with finetuning a model with Keras, take a look at the basic tutorial here!
>>> from transformers import create_optimizer, AdamWeightDecay
>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
Then you can load DistilGPT2 with TFAutoModelForCausalLM:
>>> from transformers import TFAutoModelForCausalLM
>>> model = TFAutoModelForCausalLM.from_pretrained("distilgpt2")
Convert your datasets to the tf.data.Dataset
format with prepare_tf_dataset():
>>> tf_train_set = model.prepare_tf_dataset(
... lm_dataset["train"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_test_set = model.prepare_tf_dataset(
... lm_dataset["test"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
Configure the model for training with compile
:
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer)
This can be done by specifying where to push your model and tokenizer in the PushToHubCallback:
>>> from transformers.keras_callbacks import PushToHubCallback
>>> callback = PushToHubCallback(
... output_dir="my_awesome_eli5_clm-model",
... tokenizer=tokenizer,
... )
Finally, you’re ready to start training your model! Call fit
with your training and validation datasets, the number of epochs, and your callback to finetune the model:
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=[callback])
Once training is completed, your model is automatically uploaded to the Hub so everyone can use it!
For a more in-depth example of how to finetune a model for causal language modeling, take a look at the corresponding PyTorch notebook or TensorFlow notebook.
Inference
Great, now that you’ve finetuned a model, you can use it for inference!
Come up with a prompt you’d like to generate text from:
>>> prompt = "Somatic hypermutation allows the immune system to"
The simplest way to try out your finetuned model for inference is to use it in a pipeline(). Instantiate a pipeline
for text generation with your model, and pass your text to it:
>>> from transformers import pipeline
>>> generator = pipeline("text-generation", model="my_awesome_eli5_clm-model")
>>> generator(prompt)
[{'generated_text': "Somatic hypermutation allows the immune system to be able to effectively reverse the damage caused by an infection.\n\n\nThe damage caused by an infection is caused by the immune system's ability to perform its own self-correcting tasks."}]
Tokenize the text and return the input_ids
as PyTorch tensors:
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_eli5_clm-model")
>>> inputs = tokenizer(prompt, return_tensors="pt").input_ids
Use the generate() method to generate text. For more details about the different text generation strategies and parameters for controlling generation, check out the Text Generation API.
>>> from transformers import AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("my_awesome_eli5_clm-model")
>>> outputs = model.generate(inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
Decode the generated token ids back into text:
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
["Somatic hypermutation allows the immune system to react to drugs with the ability to adapt to a different environmental situation. In other words, a system of 'hypermutation' can help the immune system to adapt to a different environmental situation or in some cases even a single life. In contrast, researchers at the University of Massachusetts-Boston have found that 'hypermutation' is much stronger in mice than in humans but can be found in humans, and that it's not completely unknown to the immune system. A study on how the immune system"]
Tokenize the text and return the input_ids
as TensorFlow tensors:
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_eli5_clm-model")
>>> inputs = tokenizer(prompt, return_tensors="tf").input_ids
Use the generate() method to create the summarization. For more details about the different text generation strategies and parameters for controlling generation, check out the Text Generation API.
>>> from transformers import TFAutoModelForCausalLM
>>> model = TFAutoModelForCausalLM.from_pretrained("my_awesome_eli5_clm-model")
>>> outputs = model.generate(input_ids=inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
Decode the generated token ids back into text:
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Somatic hypermutation allows the immune system to detect the presence of other viruses as they become more prevalent. Therefore, researchers have identified a high proportion of human viruses. The proportion of virus-associated viruses in our study increases with age. Therefore, we propose a simple algorithm to detect the presence of these new viruses in our samples as a sign of improved immunity. A first study based on this algorithm, which will be published in Science on Friday, aims to show that this finding could translate into the development of a better vaccine that is more effective for']
Masked language modeling
Masked language modeling are good for tasks that require a good contextual understanding of an entire sequence. This section shows you how to finetune DistilRoBERTa to predict a masked word.
Train
If you aren’t familiar with finetuning a model with the Trainer, take a look at the basic tutorial here!
>>> from transformers import AutoModelForMaskedLM
>>> model = AutoModelForMaskedLM.from_pretrained("distilroberta-base")
At this point, only three steps remain:
- Define your training hyperparameters in TrainingArguments. The only required parameter is
output_dir
which specifies where to save your model. You’ll push this model to the Hub by settingpush_to_hub=True
(you need to be signed in to Hugging Face to upload your model). - Pass the training arguments to Trainer along with the model, datasets, and data collator.
- Call train() to finetune your model.
>>> training_args = TrainingArguments(
... output_dir="my_awesome_eli5_mlm_model",
... evaluation_strategy="epoch",
... learning_rate=2e-5,
... num_train_epochs=3,
... weight_decay=0.01,
... push_to_hub=True,
... )
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=lm_dataset["train"],
... eval_dataset=lm_dataset["test"],
... data_collator=data_collator,
... )
>>> trainer.train()
Once training is completed, use the evaluate() method to evaluate your model and get its perplexity:
>>> import math
>>> eval_results = trainer.evaluate()
>>> print(f"Perplexity: {math.exp(eval_results['eval_loss']):.2f}")
Perplexity: 8.76
Then share your model to the Hub with the push_to_hub() method so everyone can use your model:
>>> trainer.push_to_hub()
If you aren’t familiar with finetuning a model with Keras, take a look at the basic tutorial here!
>>> from transformers import create_optimizer, AdamWeightDecay
>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
Then you can load DistilRoBERTa with TFAutoModelForMaskedLM:
>>> from transformers import TFAutoModelForMaskedLM
>>> model = TFAutoModelForMaskedLM.from_pretrained("distilroberta-base")
Convert your datasets to the tf.data.Dataset
format with prepare_tf_dataset():
>>> tf_train_set = model.prepare_tf_dataset(
... lm_dataset["train"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_test_set = model.prepare_tf_dataset(
... lm_dataset["test"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
Configure the model for training with compile
:
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer)
This can be done by specifying where to push your model and tokenizer in the PushToHubCallback:
>>> from transformers.keras_callbacks import PushToHubCallback
>>> callback = PushToHubCallback(
... output_dir="my_awesome_eli5_mlm_model",
... tokenizer=tokenizer,
... )
Finally, you’re ready to start training your model! Call fit
with your training and validation datasets, the number of epochs, and your callback to finetune the model:
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=[callback])
Once training is completed, your model is automatically uploaded to the Hub so everyone can use it!
For a more in-depth example of how to finetune a model for masked language modeling, take a look at the corresponding PyTorch notebook or TensorFlow notebook.
Inference
Great, now that you’ve finetuned a model, you can use it for inference!
Come up with some text you’d like the model to fill in the blank with, and use the special <mask>
token to indicate the blank:
>>> text = "The Milky Way is a <mask> galaxy."
The simplest way to try out your finetuned model for inference is to use it in a pipeline(). Instantiate a pipeline
for fill-mask with your model, and pass your text to it. If you like, you can use the top_k
parameter to specify how many predictions to return:
>>> from transformers import pipeline
>>> mask_filler = pipeline("fill-mask", "stevhliu/my_awesome_eli5_mlm_model")
>>> mask_filler(text, top_k=3)
[{'score': 0.5150994658470154,
'token': 21300,
'token_str': ' spiral',
'sequence': 'The Milky Way is a spiral galaxy.'},
{'score': 0.07087188959121704,
'token': 2232,
'token_str': ' massive',
'sequence': 'The Milky Way is a massive galaxy.'},
{'score': 0.06434620916843414,
'token': 650,
'token_str': ' small',
'sequence': 'The Milky Way is a small galaxy.'}]
Tokenize the text and return the input_ids
as PyTorch tensors. You’ll also need to specify the position of the <mask>
token:
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_eli5_mlm_model")
>>> inputs = tokenizer(text, return_tensors="pt")
>>> mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
Pass your inputs to the model and return the logits
of the masked token:
>>> from transformers import AutoModelForMaskedLM
>>> model = AutoModelForMaskedLM.from_pretrained("stevhliu/my_awesome_eli5_mlm_model")
>>> logits = model(**inputs).logits
>>> mask_token_logits = logits[0, mask_token_index, :]
Then return the three masked tokens with the highest probability and print them out:
>>> top_3_tokens = torch.topk(mask_token_logits, 3, dim=1).indices[0].tolist()
>>> for token in top_3_tokens:
... print(text.replace(tokenizer.mask_token, tokenizer.decode([token])))
The Milky Way is a spiral galaxy.
The Milky Way is a massive galaxy.
The Milky Way is a small galaxy.
Tokenize the text and return the input_ids
as TensorFlow tensors. You’ll also need to specify the position of the <mask>
token:
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_eli5_mlm_model")
>>> inputs = tokenizer(text, return_tensors="tf")
>>> mask_token_index = tf.where(inputs["input_ids"] == tokenizer.mask_token_id)[0, 1]
Pass your inputs to the model and return the logits
of the masked token:
>>> from transformers import TFAutoModelForMaskedLM
>>> model = TFAutoModelForMaskedLM.from_pretrained("stevhliu/my_awesome_eli5_mlm_model")
>>> logits = model(**inputs).logits
>>> mask_token_logits = logits[0, mask_token_index, :]
Then return the three masked tokens with the highest probability and print them out:
>>> top_3_tokens = tf.math.top_k(mask_token_logits, 3).indices.numpy()
>>> for token in top_3_tokens:
... print(text.replace(tokenizer.mask_token, tokenizer.decode([token])))
The Milky Way is a spiral galaxy.
The Milky Way is a massive galaxy.
The Milky Way is a small galaxy.