Transformers documentation
RoBERTa-PreLayerNorm
RoBERTa-PreLayerNorm
Overview
The RoBERTa-PreLayerNorm model was proposed in fairseq: A Fast, Extensible Toolkit for Sequence Modeling by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
It is identical to using the --encoder-normalize-before flag in fairseq.
The abstract from the paper is the following:
fairseq is an open-source sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling, and other text generation tasks. The toolkit is based on PyTorch and supports distributed training across multiple GPUs and machines. We also support fast mixed-precision training and inference on modern GPUs.
Tips:
- The implementation is the same as Roberta except instead of using Add and Norm it does Norm and Add. Add and Norm refers to the Addition and LayerNormalization as described in Attention Is All You Need.
- This is identical to using the
--encoder-normalize-beforeflag in fairseq.
This model was contributed by andreasmaden. The original code can be found here.
RobertaPreLayerNormConfig
class transformers.RobertaPreLayerNormConfig
< source >( vocab_size = 30522 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 position_embedding_type = 'absolute' use_cache = True classifier_dropout = None **kwargs )
Parameters
-
vocab_size (
int, optional, defaults to 30522) — Vocabulary size of the RoBERTa-PreLayerNorm model. Defines the number of different tokens that can be represented by theinputs_idspassed when calling RobertaPreLayerNormModel or TFRobertaPreLayerNormModel. -
hidden_size (
int, optional, defaults to 768) — Dimensionality of the encoder layers and the pooler layer. -
num_hidden_layers (
int, optional, defaults to 12) — Number of hidden layers in the Transformer encoder. -
num_attention_heads (
int, optional, defaults to 12) — Number of attention heads for each attention layer in the Transformer encoder. -
intermediate_size (
int, optional, defaults to 3072) — Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder. -
hidden_act (
strorCallable, optional, defaults to"gelu") — The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu","relu","silu"and"gelu_new"are supported. -
hidden_dropout_prob (
float, optional, defaults to 0.1) — The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. -
attention_probs_dropout_prob (
float, optional, defaults to 0.1) — The dropout ratio for the attention probabilities. -
max_position_embeddings (
int, optional, defaults to 512) — The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). -
type_vocab_size (
int, optional, defaults to 2) — The vocabulary size of thetoken_type_idspassed when calling RobertaPreLayerNormModel or TFRobertaPreLayerNormModel. -
initializer_range (
float, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices. -
layer_norm_eps (
float, optional, defaults to 1e-12) — The epsilon used by the layer normalization layers. -
position_embedding_type (
str, optional, defaults to"absolute") — Type of position embedding. Choose one of"absolute","relative_key","relative_key_query". For positional embeddings use"absolute". For more information on"relative_key", please refer to Self-Attention with Relative Position Representations (Shaw et al.). For more information on"relative_key_query", please refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.). -
is_decoder (
bool, optional, defaults toFalse) — Whether the model is used as a decoder or not. IfFalse, the model is used as an encoder. -
use_cache (
bool, optional, defaults toTrue) — Whether or not the model should return the last key/values attentions (not used by all models). Only relevant ifconfig.is_decoder=True. -
classifier_dropout (
float, optional) — The dropout ratio for the classification head.
This is the configuration class to store the configuration of a RobertaPreLayerNormModel or a TFRobertaPreLayerNormModel. It is used to instantiate a RoBERTa-PreLayerNorm model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the RoBERTa-PreLayerNorm andreasmadsen/efficient_mlm_m0.40 architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Examples:
>>> from transformers import RobertaPreLayerNormConfig, RobertaPreLayerNormModel
>>> # Initializing a RoBERTa-PreLayerNorm configuration
>>> configuration = RobertaPreLayerNormConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = RobertaPreLayerNormModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.configRobertaPreLayerNormModel
class transformers.RobertaPreLayerNormModel
< source >( config add_pooling_layer = True )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare RoBERTa-PreLayerNorm Model transformer outputting raw hidden-states without any specific head on top.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in Attention is all you need_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the is_decoder argument of the configuration set
to True. To be used in a Seq2Seq model, the model needs to initialized with both is_decoder argument and
add_cross_attention set to True; an encoder_hidden_states is then expected as an input to the forward pass.
.. _Attention is all you need: https://arxiv.org/abs/1706.03762
forward
< source >(
input_ids: typing.Optional[torch.Tensor] = None
attention_mask: typing.Optional[torch.Tensor] = None
token_type_ids: typing.Optional[torch.Tensor] = None
position_ids: typing.Optional[torch.Tensor] = None
head_mask: typing.Optional[torch.Tensor] = None
inputs_embeds: typing.Optional[torch.Tensor] = None
encoder_hidden_states: typing.Optional[torch.Tensor] = None
encoder_attention_mask: typing.Optional[torch.Tensor] = None
past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None
use_cache: typing.Optional[bool] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
β
transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions or tuple(torch.FloatTensor)
Parameters
-
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
type_vocab_sizeparameter with value= 2. All the value in this tensor should be always < type_vocab_size.
-
position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
torch.FloatTensorof shape(num_heads,)or(num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. -
output_attentions (
bool, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail. -
output_hidden_states (
bool, optional) — Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail. -
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple. -
encoder_hidden_states (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. -
encoder_attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
past_key_values (
tuple(tuple(torch.FloatTensor))of lengthconfig.n_layerswith each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.If
past_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length). -
use_cache (
bool, optional) — If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values).
Returns
transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (RobertaPreLayerNormConfig) and inputs.
-
last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size)) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
torch.FloatTensorof shape(batch_size, hidden_size)) β Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. -
hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
cross_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueandconfig.add_cross_attention=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoderβs cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
-
past_key_values (
tuple(tuple(torch.FloatTensor)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) β Tuple oftuple(torch.FloatTensor)of lengthconfig.n_layers, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)) and optionally ifconfig.is_encoder_decoder=True2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head).Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
config.is_encoder_decoder=Truein the cross-attention blocks) that can be used (seepast_key_valuesinput) to speed up sequential decoding.
The RobertaPreLayerNormModel forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, RobertaPreLayerNormModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = RobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_stateRobertaPreLayerNormForCausalLM
class transformers.RobertaPreLayerNormForCausalLM
< source >( config )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RoBERTa-PreLayerNorm Model with a language modeling head on top for CLM fine-tuning.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >(
input_ids: typing.Optional[torch.LongTensor] = None
attention_mask: typing.Optional[torch.FloatTensor] = None
token_type_ids: typing.Optional[torch.LongTensor] = None
position_ids: typing.Optional[torch.LongTensor] = None
head_mask: typing.Optional[torch.FloatTensor] = None
inputs_embeds: typing.Optional[torch.FloatTensor] = None
encoder_hidden_states: typing.Optional[torch.FloatTensor] = None
encoder_attention_mask: typing.Optional[torch.FloatTensor] = None
labels: typing.Optional[torch.LongTensor] = None
past_key_values: typing.Tuple[typing.Tuple[torch.FloatTensor]] = None
use_cache: typing.Optional[bool] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
β
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
Parameters
-
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
type_vocab_sizeparameter with value= 2. All the value in this tensor should be always < type_vocab_size.
-
position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
torch.FloatTensorof shape(num_heads,)or(num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. -
output_attentions (
bool, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail. -
output_hidden_states (
bool, optional) — Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail. -
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple. -
encoder_hidden_states (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. -
encoder_attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
labels (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in[-100, 0, ..., config.vocab_size](seeinput_idsdocstring) Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size] -
past_key_values (
tuple(tuple(torch.FloatTensor))of lengthconfig.n_layerswith each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.If
past_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length). -
use_cache (
bool, optional) — If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values).
Returns
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (RobertaPreLayerNormConfig) and inputs.
-
loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) β Language modeling loss (for next-token prediction). -
logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
cross_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
-
past_key_values (
tuple(tuple(torch.FloatTensor)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) β Tuple oftorch.FloatTensortuples of lengthconfig.n_layers, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant ifconfig.is_decoder = True.Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding.
The RobertaPreLayerNormForCausalLM forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, RobertaPreLayerNormForCausalLM, AutoConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> config = AutoConfig.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> config.is_decoder = True
>>> model = RobertaPreLayerNormForCausalLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40", config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logitsRobertaPreLayerNormForMaskedLM
class transformers.RobertaPreLayerNormForMaskedLM
< source >( config )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RoBERTa-PreLayerNorm Model with a language modeling head on top.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >(
input_ids: typing.Optional[torch.LongTensor] = None
attention_mask: typing.Optional[torch.FloatTensor] = None
token_type_ids: typing.Optional[torch.LongTensor] = None
position_ids: typing.Optional[torch.LongTensor] = None
head_mask: typing.Optional[torch.FloatTensor] = None
inputs_embeds: typing.Optional[torch.FloatTensor] = None
encoder_hidden_states: typing.Optional[torch.FloatTensor] = None
encoder_attention_mask: typing.Optional[torch.FloatTensor] = None
labels: typing.Optional[torch.LongTensor] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
β
transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
Parameters
-
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
type_vocab_sizeparameter with value= 2. All the value in this tensor should be always < type_vocab_size.
-
position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
torch.FloatTensorof shape(num_heads,)or(num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. -
output_attentions (
bool, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail. -
output_hidden_states (
bool, optional) — Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail. -
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple. -
labels (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Labels for computing the masked language modeling loss. Indices should be in[-100, 0, ..., config.vocab_size](seeinput_idsdocstring) Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size] -
kwargs (
Dict[str, any], optional, defaults to {}) — Used to hide legacy arguments that have been deprecated.
Returns
transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.MaskedLMOutput or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (RobertaPreLayerNormConfig) and inputs.
-
loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) β Masked language modeling (MLM) loss. -
logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The RobertaPreLayerNormForMaskedLM forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, RobertaPreLayerNormForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = RobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)RobertaPreLayerNormForSequenceClassification
class transformers.RobertaPreLayerNormForSequenceClassification
< source >( config )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RoBERTa-PreLayerNorm Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >(
input_ids: typing.Optional[torch.LongTensor] = None
attention_mask: typing.Optional[torch.FloatTensor] = None
token_type_ids: typing.Optional[torch.LongTensor] = None
position_ids: typing.Optional[torch.LongTensor] = None
head_mask: typing.Optional[torch.FloatTensor] = None
inputs_embeds: typing.Optional[torch.FloatTensor] = None
labels: typing.Optional[torch.LongTensor] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
β
transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)
Parameters
-
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
type_vocab_sizeparameter with value= 2. All the value in this tensor should be always < type_vocab_size.
-
position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
torch.FloatTensorof shape(num_heads,)or(num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. -
output_attentions (
bool, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail. -
output_hidden_states (
bool, optional) — Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail. -
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple. -
labels (
torch.LongTensorof shape(batch_size,), optional) — Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]. Ifconfig.num_labels == 1a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1a classification loss is computed (Cross-Entropy).
Returns
transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.SequenceClassifierOutput or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (RobertaPreLayerNormConfig) and inputs.
-
loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) β Classification (or regression if config.num_labels==1) loss. -
logits (
torch.FloatTensorof shape(batch_size, config.num_labels)) β Classification (or regression if config.num_labels==1) scores (before SoftMax). -
hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The RobertaPreLayerNormForSequenceClassification forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example of single-label classification:
>>> import torch
>>> from transformers import AutoTokenizer, RobertaPreLayerNormForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = RobertaPreLayerNormForSequenceClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = RobertaPreLayerNormForSequenceClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).lossExample of multi-label classification:
>>> import torch
>>> from transformers import AutoTokenizer, RobertaPreLayerNormForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = RobertaPreLayerNormForSequenceClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = RobertaPreLayerNormForSequenceClassification.from_pretrained(
... "andreasmadsen/efficient_mlm_m0.40", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).lossRobertaPreLayerNormForMultipleChoice
class transformers.RobertaPreLayerNormForMultipleChoice
< source >( config )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RobertaPreLayerNorm Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >(
input_ids: typing.Optional[torch.LongTensor] = None
token_type_ids: typing.Optional[torch.LongTensor] = None
attention_mask: typing.Optional[torch.FloatTensor] = None
labels: typing.Optional[torch.LongTensor] = None
position_ids: typing.Optional[torch.LongTensor] = None
head_mask: typing.Optional[torch.FloatTensor] = None
inputs_embeds: typing.Optional[torch.FloatTensor] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
β
transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)
Parameters
-
input_ids (
torch.LongTensorof shape(batch_size, num_choices, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
torch.FloatTensorof shape(batch_size, num_choices, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
torch.LongTensorof shape(batch_size, num_choices, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
type_vocab_sizeparameter with value= 2. All the value in this tensor should be always < type_vocab_size.
-
position_ids (
torch.LongTensorof shape(batch_size, num_choices, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
torch.FloatTensorof shape(num_heads,)or(num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
inputs_embeds (
torch.FloatTensorof shape(batch_size, num_choices, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. -
output_attentions (
bool, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail. -
output_hidden_states (
bool, optional) — Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail. -
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple. -
labels (
torch.LongTensorof shape(batch_size,), optional) — Labels for computing the multiple choice classification loss. Indices should be in[0, ..., num_choices-1]wherenum_choicesis the size of the second dimension of the input tensors. (Seeinput_idsabove)
Returns
transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.MultipleChoiceModelOutput or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (RobertaPreLayerNormConfig) and inputs.
-
loss (
torch.FloatTensorof shape (1,), optional, returned whenlabelsis provided) β Classification loss. -
logits (
torch.FloatTensorof shape(batch_size, num_choices)) β num_choices is the second dimension of the input tensors. (see input_ids above).Classification scores (before SoftMax).
-
hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The RobertaPreLayerNormForMultipleChoice forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, RobertaPreLayerNormForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = RobertaPreLayerNormForMultipleChoice.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logitsRobertaPreLayerNormForTokenClassification
class transformers.RobertaPreLayerNormForTokenClassification
< source >( config )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RobertaPreLayerNorm Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >(
input_ids: typing.Optional[torch.LongTensor] = None
attention_mask: typing.Optional[torch.FloatTensor] = None
token_type_ids: typing.Optional[torch.LongTensor] = None
position_ids: typing.Optional[torch.LongTensor] = None
head_mask: typing.Optional[torch.FloatTensor] = None
inputs_embeds: typing.Optional[torch.FloatTensor] = None
labels: typing.Optional[torch.LongTensor] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
β
transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)
Parameters
-
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
type_vocab_sizeparameter with value= 2. All the value in this tensor should be always < type_vocab_size.
-
position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
torch.FloatTensorof shape(num_heads,)or(num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. -
output_attentions (
bool, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail. -
output_hidden_states (
bool, optional) — Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail. -
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple. -
labels (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Labels for computing the token classification loss. Indices should be in[0, ..., config.num_labels - 1].
Returns
transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.TokenClassifierOutput or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (RobertaPreLayerNormConfig) and inputs.
-
loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) β Classification loss. -
logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.num_labels)) β Classification scores (before SoftMax). -
hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The RobertaPreLayerNormForTokenClassification forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, RobertaPreLayerNormForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = RobertaPreLayerNormForTokenClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).lossRobertaPreLayerNormForQuestionAnswering
class transformers.RobertaPreLayerNormForQuestionAnswering
< source >( config )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RobertaPreLayerNorm Model with a span classification head on top for extractive question-answering tasks like SQuAD
(a linear layers on top of the hidden-states output to compute span start logits and span end logits).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >(
input_ids: typing.Optional[torch.LongTensor] = None
attention_mask: typing.Optional[torch.FloatTensor] = None
token_type_ids: typing.Optional[torch.LongTensor] = None
position_ids: typing.Optional[torch.LongTensor] = None
head_mask: typing.Optional[torch.FloatTensor] = None
inputs_embeds: typing.Optional[torch.FloatTensor] = None
start_positions: typing.Optional[torch.LongTensor] = None
end_positions: typing.Optional[torch.LongTensor] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
β
transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)
Parameters
-
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
type_vocab_sizeparameter with value= 2. All the value in this tensor should be always < type_vocab_size.
-
position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
torch.FloatTensorof shape(num_heads,)or(num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. -
output_attentions (
bool, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail. -
output_hidden_states (
bool, optional) — Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail. -
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple. -
start_positions (
torch.LongTensorof shape(batch_size,), optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss. -
end_positions (
torch.LongTensorof shape(batch_size,), optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.
Returns
transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.QuestionAnsweringModelOutput or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (RobertaPreLayerNormConfig) and inputs.
-
loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) β Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. -
start_logits (
torch.FloatTensorof shape(batch_size, sequence_length)) β Span-start scores (before SoftMax). -
end_logits (
torch.FloatTensorof shape(batch_size, sequence_length)) β Span-end scores (before SoftMax). -
hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The RobertaPreLayerNormForQuestionAnswering forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, RobertaPreLayerNormForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = RobertaPreLayerNormForQuestionAnswering.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.lossTFRobertaPreLayerNormModel
class transformers.TFRobertaPreLayerNormModel
< source >( *args **kwargs )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare RoBERTa-PreLayerNorm Model transformer outputting raw hidden-states without any specific head on top.
This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit() things should βjust workβ for you - just
pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second
format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with
the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with
input_idsonly and nothing else:model(input_ids) - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids]) - a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you donβt need to worry about any of this, as you can just pass inputs like you would to any other Python function!
call
< source >(
input_ids: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, keras.engine.keras_tensor.KerasTensor, NoneType] = None
attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
token_type_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
position_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
head_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
inputs_embeds: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
encoder_hidden_states: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
encoder_attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
past_key_values: typing.Union[typing.Tuple[typing.Tuple[typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]]], NoneType] = None
use_cache: typing.Optional[bool] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
training: typing.Optional[bool] = False
)
β
transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions or tuple(tf.Tensor)
Parameters
-
input_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
-
attention_mask (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
-
position_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
Numpy arrayortf.Tensorof shape(num_heads,)or(num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
inputs_embeds (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. -
output_attentions (
bool, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
output_hidden_states (
bool, optional) — Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. -
training (
bool, optional, defaults toFalse) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). -
encoder_hidden_states (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. -
encoder_attention_mask (
tf.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
past_key_values (
Tuple[Tuple[tf.Tensor]]of lengthconfig.n_layers) — contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. Ifpast_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length). -
use_cache (
bool, optional, defaults toTrue) — If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values). Set toFalseduring training,Trueduring generation
Returns
transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions or a tuple of tf.Tensor (if
return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the
configuration (RobertaPreLayerNormConfig) and inputs.
-
last_hidden_state (
tf.Tensorof shape(batch_size, sequence_length, hidden_size)) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
tf.Tensorof shape(batch_size, hidden_size)) β Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.This output is usually not a good summary of the semantic content of the input, youβre often better with averaging or pooling the sequence of hidden-states for the whole input sequence.
-
past_key_values (
List[tf.Tensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) β List oftf.Tensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding. -
hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
cross_attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoderβs cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
The TFRobertaPreLayerNormModel forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, TFRobertaPreLayerNormModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = TFRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_stateTFRobertaPreLayerNormForCausalLM
call
< source >(
input_ids: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, keras.engine.keras_tensor.KerasTensor, NoneType] = None
attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
token_type_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
position_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
head_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
inputs_embeds: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
encoder_hidden_states: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
encoder_attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
past_key_values: typing.Union[typing.Tuple[typing.Tuple[typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]]], NoneType] = None
use_cache: typing.Optional[bool] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
labels: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
training: typing.Optional[bool] = False
)
β
transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions or tuple(tf.Tensor)
Parameters
-
input_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
-
attention_mask (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
-
position_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
Numpy arrayortf.Tensorof shape(num_heads,)or(num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
inputs_embeds (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. -
output_attentions (
bool, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
output_hidden_states (
bool, optional) — Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. -
training (
bool, optional, defaults toFalse) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). -
encoder_hidden_states (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. -
encoder_attention_mask (
tf.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
past_key_values (
Tuple[Tuple[tf.Tensor]]of lengthconfig.n_layers) — contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. Ifpast_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length). -
use_cache (
bool, optional, defaults toTrue) — If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values). Set toFalseduring training,Trueduring generation -
labels (
tf.Tensorornp.ndarrayof shape(batch_size, sequence_length), optional) — Labels for computing the cross entropy classification loss. Indices should be in[0, ..., config.vocab_size - 1].
Returns
transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions or a tuple of tf.Tensor (if
return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the
configuration (RobertaPreLayerNormConfig) and inputs.
-
loss (
tf.Tensorof shape(n,), optional, where n is the number of non-masked labels, returned whenlabelsis provided) β Language modeling loss (for next-token prediction). -
logits (
tf.Tensorof shape(batch_size, sequence_length, config.vocab_size)) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
cross_attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoderβs cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
-
past_key_values (
List[tf.Tensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) β List oftf.Tensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding.
The TFRobertaPreLayerNormForCausalLM forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, TFRobertaPreLayerNormForCausalLM
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = TFRobertaPreLayerNormForCausalLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logitsTFRobertaPreLayerNormForMaskedLM
class transformers.TFRobertaPreLayerNormForMaskedLM
< source >( *args **kwargs )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RoBERTa-PreLayerNorm Model with a language modeling head on top.
This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit() things should βjust workβ for you - just
pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second
format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with
the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with
input_idsonly and nothing else:model(input_ids) - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids]) - a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you donβt need to worry about any of this, as you can just pass inputs like you would to any other Python function!
call
< source >(
input_ids: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, keras.engine.keras_tensor.KerasTensor, NoneType] = None
attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
token_type_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
position_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
head_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
inputs_embeds: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
labels: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
training: typing.Optional[bool] = False
)
β
transformers.modeling_tf_outputs.TFMaskedLMOutput or tuple(tf.Tensor)
Parameters
-
input_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
-
attention_mask (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
-
position_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
Numpy arrayortf.Tensorof shape(num_heads,)or(num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
inputs_embeds (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. -
output_attentions (
bool, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
output_hidden_states (
bool, optional) — Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. -
training (
bool, optional, defaults toFalse) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). -
labels (
tf.Tensorof shape(batch_size, sequence_length), optional) — Labels for computing the masked language modeling loss. Indices should be in[-100, 0, ..., config.vocab_size](seeinput_idsdocstring) Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]
Returns
transformers.modeling_tf_outputs.TFMaskedLMOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFMaskedLMOutput or a tuple of tf.Tensor (if
return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the
configuration (RobertaPreLayerNormConfig) and inputs.
-
loss (
tf.Tensorof shape(n,), optional, where n is the number of non-masked labels, returned whenlabelsis provided) β Masked language modeling (MLM) loss. -
logits (
tf.Tensorof shape(batch_size, sequence_length, config.vocab_size)) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFRobertaPreLayerNormForMaskedLM forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, TFRobertaPreLayerNormForMaskedLM
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = TFRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> # retrieve index of <mask>
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)
>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> tokenizer.decode(predicted_token_id)
' Paris'TFRobertaPreLayerNormForSequenceClassification
class transformers.TFRobertaPreLayerNormForSequenceClassification
< source >( *args **kwargs )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RoBERTa-PreLayerNorm Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit() things should βjust workβ for you - just
pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second
format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with
the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with
input_idsonly and nothing else:model(input_ids) - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids]) - a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you donβt need to worry about any of this, as you can just pass inputs like you would to any other Python function!
call
< source >(
input_ids: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, keras.engine.keras_tensor.KerasTensor, NoneType] = None
attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
token_type_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
position_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
head_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
inputs_embeds: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
labels: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
training: typing.Optional[bool] = False
)
β
transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)
Parameters
-
input_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
-
attention_mask (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
-
position_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
Numpy arrayortf.Tensorof shape(num_heads,)or(num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
inputs_embeds (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. -
output_attentions (
bool, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
output_hidden_states (
bool, optional) — Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. -
training (
bool, optional, defaults toFalse) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). -
labels (
tf.Tensorof shape(batch_size,), optional) — Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]. Ifconfig.num_labels == 1a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1a classification loss is computed (Cross-Entropy).
Returns
transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFSequenceClassifierOutput or a tuple of tf.Tensor (if
return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the
configuration (RobertaPreLayerNormConfig) and inputs.
-
loss (
tf.Tensorof shape(batch_size, ), optional, returned whenlabelsis provided) β Classification (or regression if config.num_labels==1) loss. -
logits (
tf.Tensorof shape(batch_size, config.num_labels)) β Classification (or regression if config.num_labels==1) scores (before SoftMax). -
hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFRobertaPreLayerNormForSequenceClassification forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, TFRobertaPreLayerNormForSequenceClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = TFRobertaPreLayerNormForSequenceClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> model.config.id2label[predicted_class_id]
'optimism'>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFRobertaPreLayerNormForSequenceClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40", num_labels=num_labels)
>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss
>>> round(float(loss), 2)
0.08TFRobertaPreLayerNormForMultipleChoice
class transformers.TFRobertaPreLayerNormForMultipleChoice
< source >( *args **kwargs )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RobertaPreLayerNorm Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit() things should βjust workβ for you - just
pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second
format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with
the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with
input_idsonly and nothing else:model(input_ids) - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids]) - a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you donβt need to worry about any of this, as you can just pass inputs like you would to any other Python function!
call
< source >(
input_ids: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, keras.engine.keras_tensor.KerasTensor, NoneType] = None
attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
token_type_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
position_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
head_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
inputs_embeds: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
labels: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
training: typing.Optional[bool] = False
)
β
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput or tuple(tf.Tensor)
Parameters
-
input_ids (
Numpy arrayortf.Tensorof shape(batch_size, num_choices, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
-
attention_mask (
Numpy arrayortf.Tensorof shape(batch_size, num_choices, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
Numpy arrayortf.Tensorof shape(batch_size, num_choices, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
-
position_ids (
Numpy arrayortf.Tensorof shape(batch_size, num_choices, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
Numpy arrayortf.Tensorof shape(num_heads,)or(num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
inputs_embeds (
tf.Tensorof shape(batch_size, num_choices, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. -
output_attentions (
bool, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
output_hidden_states (
bool, optional) — Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. -
training (
bool, optional, defaults toFalse) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). -
labels (
tf.Tensorof shape(batch_size,), optional) — Labels for computing the multiple choice classification loss. Indices should be in[0, ..., num_choices]wherenum_choicesis the size of the second dimension of the input tensors. (Seeinput_idsabove)
Returns
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput or a tuple of tf.Tensor (if
return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the
configuration (RobertaPreLayerNormConfig) and inputs.
-
loss (
tf.Tensorof shape (batch_size, ), optional, returned whenlabelsis provided) β Classification loss. -
logits (
tf.Tensorof shape(batch_size, num_choices)) β num_choices is the second dimension of the input tensors. (see input_ids above).Classification scores (before SoftMax).
-
hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFRobertaPreLayerNormForMultipleChoice forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, TFRobertaPreLayerNormForMultipleChoice
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = TFRobertaPreLayerNormForMultipleChoice.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> logits = outputs.logitsTFRobertaPreLayerNormForTokenClassification
class transformers.TFRobertaPreLayerNormForTokenClassification
< source >( *args **kwargs )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RoBERTa-PreLayerNorm Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit() things should βjust workβ for you - just
pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second
format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with
the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with
input_idsonly and nothing else:model(input_ids) - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids]) - a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you donβt need to worry about any of this, as you can just pass inputs like you would to any other Python function!
call
< source >(
input_ids: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, keras.engine.keras_tensor.KerasTensor, NoneType] = None
attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
token_type_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
position_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
head_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
inputs_embeds: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
labels: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
training: typing.Optional[bool] = False
)
β
transformers.modeling_tf_outputs.TFTokenClassifierOutput or tuple(tf.Tensor)
Parameters
-
input_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
-
attention_mask (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
-
position_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
Numpy arrayortf.Tensorof shape(num_heads,)or(num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
inputs_embeds (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. -
output_attentions (
bool, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
output_hidden_states (
bool, optional) — Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. -
training (
bool, optional, defaults toFalse) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). -
labels (
tf.Tensorof shape(batch_size, sequence_length), optional) — Labels for computing the token classification loss. Indices should be in[0, ..., config.num_labels - 1].
Returns
transformers.modeling_tf_outputs.TFTokenClassifierOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFTokenClassifierOutput or a tuple of tf.Tensor (if
return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the
configuration (RobertaPreLayerNormConfig) and inputs.
-
loss (
tf.Tensorof shape(n,), optional, where n is the number of unmasked labels, returned whenlabelsis provided) β Classification loss. -
logits (
tf.Tensorof shape(batch_size, sequence_length, config.num_labels)) β Classification scores (before SoftMax). -
hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFRobertaPreLayerNormForTokenClassification forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, TFRobertaPreLayerNormForTokenClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = TFRobertaPreLayerNormForTokenClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )
>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> predicted_tokens_classes
['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']TFRobertaPreLayerNormForQuestionAnswering
class transformers.TFRobertaPreLayerNormForQuestionAnswering
< source >( *args **kwargs )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RoBERTa-PreLayerNorm Model with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).
This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit() things should βjust workβ for you - just
pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second
format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with
the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with
input_idsonly and nothing else:model(input_ids) - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids]) - a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you donβt need to worry about any of this, as you can just pass inputs like you would to any other Python function!
call
< source >(
input_ids: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, keras.engine.keras_tensor.KerasTensor, NoneType] = None
attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
token_type_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
position_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
head_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
inputs_embeds: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
start_positions: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
end_positions: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
training: typing.Optional[bool] = False
)
β
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput or tuple(tf.Tensor)
Parameters
-
input_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
-
attention_mask (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
-
position_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
Numpy arrayortf.Tensorof shape(num_heads,)or(num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
inputs_embeds (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. -
output_attentions (
bool, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
output_hidden_states (
bool, optional) — Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. -
training (
bool, optional, defaults toFalse) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). -
start_positions (
tf.Tensorof shape(batch_size,), optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss. -
end_positions (
tf.Tensorof shape(batch_size,), optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.
Returns
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput or a tuple of tf.Tensor (if
return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the
configuration (RobertaPreLayerNormConfig) and inputs.
-
loss (
tf.Tensorof shape(batch_size, ), optional, returned whenstart_positionsandend_positionsare provided) β Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. -
start_logits (
tf.Tensorof shape(batch_size, sequence_length)) β Span-start scores (before SoftMax). -
end_logits (
tf.Tensorof shape(batch_size, sequence_length)) β Span-end scores (before SoftMax). -
hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFRobertaPreLayerNormForQuestionAnswering forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, TFRobertaPreLayerNormForQuestionAnswering
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = TFRobertaPreLayerNormForQuestionAnswering.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)
>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens)
' puppet'FlaxRobertaPreLayerNormModel
class transformers.FlaxRobertaPreLayerNormModel
< source >( config: RobertaPreLayerNormConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare RoBERTa-PreLayerNorm Model transformer outputting raw hidden-states without any specific head on top.
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >(
input_ids
attention_mask = None
token_type_ids = None
position_ids = None
head_mask = None
encoder_hidden_states = None
encoder_attention_mask = None
params: dict = None
dropout_rng: PRNGKey = None
train: bool = False
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
past_key_values: dict = None
)
β
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)
Parameters
-
input_ids (
numpy.ndarrayof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
numpy.ndarrayof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
numpy.ndarrayof shape(batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
-
position_ids (
numpy.ndarrayof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
numpy.ndarrayof shape(batch_size, sequence_length),optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in[0, 1]`:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (RobertaPreLayerNormConfig) and inputs.
-
last_hidden_state (
jnp.ndarrayof shape(batch_size, sequence_length, hidden_size)) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
jnp.ndarrayof shape(batch_size, hidden_size)) β Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. -
hidden_states (
tuple(jnp.ndarray), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple ofjnp.ndarray(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple ofjnp.ndarray(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxRobertaPreLayerNormPreTrainedModel forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormModel
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_stateFlaxRobertaPreLayerNormForCausalLM
class transformers.FlaxRobertaPreLayerNormForCausalLM
< source >( config: RobertaPreLayerNormConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RobertaPreLayerNorm Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for autoregressive tasks.
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >(
input_ids
attention_mask = None
token_type_ids = None
position_ids = None
head_mask = None
encoder_hidden_states = None
encoder_attention_mask = None
params: dict = None
dropout_rng: PRNGKey = None
train: bool = False
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
past_key_values: dict = None
)
β
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
Parameters
-
input_ids (
numpy.ndarrayof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
numpy.ndarrayof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
numpy.ndarrayof shape(batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
-
position_ids (
numpy.ndarrayof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
numpy.ndarrayof shape(batch_size, sequence_length),optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in[0, 1]`:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (RobertaPreLayerNormConfig) and inputs.
-
logits (
jnp.ndarrayof shape(batch_size, sequence_length, config.vocab_size)) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
hidden_states (
tuple(jnp.ndarray), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple ofjnp.ndarray(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple ofjnp.ndarray(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
cross_attentions (
tuple(jnp.ndarray), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple ofjnp.ndarray(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
-
past_key_values (
tuple(tuple(jnp.ndarray)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) β Tuple ofjnp.ndarraytuples of lengthconfig.n_layers, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant ifconfig.is_decoder = True.Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding.
The FlaxRobertaPreLayerNormPreTrainedModel forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = FlaxRobertaPreLayerNormForCausalLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]FlaxRobertaPreLayerNormForMaskedLM
class transformers.FlaxRobertaPreLayerNormForMaskedLM
< source >( config: RobertaPreLayerNormConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RoBERTa-PreLayerNorm Model with a language modeling head on top.
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >(
input_ids
attention_mask = None
token_type_ids = None
position_ids = None
head_mask = None
encoder_hidden_states = None
encoder_attention_mask = None
params: dict = None
dropout_rng: PRNGKey = None
train: bool = False
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
past_key_values: dict = None
)
β
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)
Parameters
-
input_ids (
numpy.ndarrayof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
numpy.ndarrayof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
numpy.ndarrayof shape(batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
-
position_ids (
numpy.ndarrayof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
numpy.ndarrayof shape(batch_size, sequence_length),optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in[0, 1]`:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (RobertaPreLayerNormConfig) and inputs.
-
last_hidden_state (
jnp.ndarrayof shape(batch_size, sequence_length, hidden_size)) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
jnp.ndarrayof shape(batch_size, hidden_size)) β Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. -
hidden_states (
tuple(jnp.ndarray), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple ofjnp.ndarray(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple ofjnp.ndarray(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxRobertaPreLayerNormPreTrainedModel forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logitsFlaxRobertaPreLayerNormForSequenceClassification
class transformers.FlaxRobertaPreLayerNormForSequenceClassification
< source >( config: RobertaPreLayerNormConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RobertaPreLayerNorm Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >(
input_ids
attention_mask = None
token_type_ids = None
position_ids = None
head_mask = None
encoder_hidden_states = None
encoder_attention_mask = None
params: dict = None
dropout_rng: PRNGKey = None
train: bool = False
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
past_key_values: dict = None
)
β
transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or tuple(torch.FloatTensor)
Parameters
-
input_ids (
numpy.ndarrayof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
numpy.ndarrayof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
numpy.ndarrayof shape(batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
-
position_ids (
numpy.ndarrayof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
numpy.ndarrayof shape(batch_size, sequence_length),optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in[0, 1]`:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (RobertaPreLayerNormConfig) and inputs.
-
logits (
jnp.ndarrayof shape(batch_size, config.num_labels)) β Classification (or regression if config.num_labels==1) scores (before SoftMax). -
hidden_states (
tuple(jnp.ndarray), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple ofjnp.ndarray(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple ofjnp.ndarray(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxRobertaPreLayerNormPreTrainedModel forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = FlaxRobertaPreLayerNormForSequenceClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logitsFlaxRobertaPreLayerNormForMultipleChoice
class transformers.FlaxRobertaPreLayerNormForMultipleChoice
< source >( config: RobertaPreLayerNormConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RobertaPreLayerNorm Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >(
input_ids
attention_mask = None
token_type_ids = None
position_ids = None
head_mask = None
encoder_hidden_states = None
encoder_attention_mask = None
params: dict = None
dropout_rng: PRNGKey = None
train: bool = False
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
past_key_values: dict = None
)
β
transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput or tuple(torch.FloatTensor)
Parameters
-
input_ids (
numpy.ndarrayof shape(batch_size, num_choices, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
numpy.ndarrayof shape(batch_size, num_choices, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
numpy.ndarrayof shape(batch_size, num_choices, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
-
position_ids (
numpy.ndarrayof shape(batch_size, num_choices, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
numpy.ndarrayof shape(batch_size, num_choices, sequence_length),optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in[0, 1]`:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (RobertaPreLayerNormConfig) and inputs.
-
logits (
jnp.ndarrayof shape(batch_size, num_choices)) β num_choices is the second dimension of the input tensors. (see input_ids above).Classification scores (before SoftMax).
-
hidden_states (
tuple(jnp.ndarray), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple ofjnp.ndarray(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple ofjnp.ndarray(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxRobertaPreLayerNormPreTrainedModel forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormForMultipleChoice
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = FlaxRobertaPreLayerNormForMultipleChoice.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
>>> outputs = model(**{k: v[None, :] for k, v in encoding.items()})
>>> logits = outputs.logitsFlaxRobertaPreLayerNormForTokenClassification
class transformers.FlaxRobertaPreLayerNormForTokenClassification
< source >( config: RobertaPreLayerNormConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RobertaPreLayerNorm Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >(
input_ids
attention_mask = None
token_type_ids = None
position_ids = None
head_mask = None
encoder_hidden_states = None
encoder_attention_mask = None
params: dict = None
dropout_rng: PRNGKey = None
train: bool = False
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
past_key_values: dict = None
)
β
transformers.modeling_flax_outputs.FlaxTokenClassifierOutput or tuple(torch.FloatTensor)
Parameters
-
input_ids (
numpy.ndarrayof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
numpy.ndarrayof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
numpy.ndarrayof shape(batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
-
position_ids (
numpy.ndarrayof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
numpy.ndarrayof shape(batch_size, sequence_length),optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in[0, 1]`:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxTokenClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxTokenClassifierOutput or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (RobertaPreLayerNormConfig) and inputs.
-
logits (
jnp.ndarrayof shape(batch_size, sequence_length, config.num_labels)) β Classification scores (before SoftMax). -
hidden_states (
tuple(jnp.ndarray), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple ofjnp.ndarray(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple ofjnp.ndarray(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxRobertaPreLayerNormPreTrainedModel forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormForTokenClassification
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = FlaxRobertaPreLayerNormForTokenClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logitsFlaxRobertaPreLayerNormForQuestionAnswering
class transformers.FlaxRobertaPreLayerNormForQuestionAnswering
< source >( config: RobertaPreLayerNormConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
Parameters
- config (RobertaPreLayerNormConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RobertaPreLayerNorm Model with a span classification head on top for extractive question-answering tasks like SQuAD
(a linear layers on top of the hidden-states output to compute span start logits and span end logits).
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >(
input_ids
attention_mask = None
token_type_ids = None
position_ids = None
head_mask = None
encoder_hidden_states = None
encoder_attention_mask = None
params: dict = None
dropout_rng: PRNGKey = None
train: bool = False
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
past_key_values: dict = None
)
β
transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
Parameters
-
input_ids (
numpy.ndarrayof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
numpy.ndarrayof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
token_type_ids (
numpy.ndarrayof shape(batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
-
position_ids (
numpy.ndarrayof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]. -
head_mask (
numpy.ndarrayof shape(batch_size, sequence_length),optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in[0, 1]`:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
-
return_dict (
bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (RobertaPreLayerNormConfig) and inputs.
-
start_logits (
jnp.ndarrayof shape(batch_size, sequence_length)) β Span-start scores (before SoftMax). -
end_logits (
jnp.ndarrayof shape(batch_size, sequence_length)) β Span-end scores (before SoftMax). -
hidden_states (
tuple(jnp.ndarray), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple ofjnp.ndarray(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple ofjnp.ndarray(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxRobertaPreLayerNormPreTrainedModel forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = FlaxRobertaPreLayerNormForQuestionAnswering.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")
>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits