CLIP
Overview
The CLIP model was proposed in Learning Transferable Visual Models From Natural Language Supervision by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pairs. It can be instructed in natural language to predict the most relevant text snippet, given an image, without directly optimizing for the task, similarly to the zero-shot capabilities of GPT-2 and 3.
The abstract from the paper is the following:
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at this https URL.
Usage
CLIP is a multi-modal vision and language model. It can be used for image-text similarity and for zero-shot image classification. CLIP uses a ViT like transformer to get visual features and a causal language model to get the text features. Both the text and visual features are then projected to a latent space with identical dimension. The dot product between the projected image and text features is then used as a similar score.
To feed images to the Transformer encoder, each image is split into a sequence of fixed-size non-overlapping patches, which are then linearly embedded. A [CLS] token is added to serve as representation of an entire image. The authors also add absolute position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder. The CLIPFeatureExtractor can be used to resize (or rescale) and normalize images for the model.
The CLIPTokenizer is used to encode the text. The CLIPProcessor wraps CLIPFeatureExtractor and CLIPTokenizer into a single instance to both encode the text and prepare the images. The following example shows how to get the image-text similarity scores using CLIPProcessor and CLIPModel.
>>> from PIL import Image
>>> import requests
>>> from transformers import CLIPProcessor, CLIPModel
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
This model was contributed by valhalla. The original code can be found here.
CLIPConfig
class transformers.CLIPConfig
< source >( text_config_dict = None vision_config_dict = None projection_dim = 512 logit_scale_init_value = 2.6592 **kwargs )
Parameters
-
text_config_dict (
dict
, optional) — Dictionary of configuration options used to initialize CLIPTextConfig. -
vision_config_dict (
dict
, optional) — Dictionary of configuration options used to initialize CLIPVisionConfig. -
projection_dim (
int
, optional, defaults to 512) — Dimentionality of text and vision projection layers. -
logit_scale_init_value (
float
, optional, defaults to 2.6592) — The inital value of the logit_scale paramter. Default is used as per the original CLIP implementation. - kwargs (optional) — Dictionary of keyword arguments.
CLIPConfig is the configuration class to store the configuration of a CLIPModel. It is used to instantiate CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIP openai/clip-vit-base-patch32 architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import CLIPConfig, CLIPModel
>>> # Initializing a CLIPConfig with openai/clip-vit-base-patch32 style configuration
>>> configuration = CLIPConfig()
>>> # Initializing a CLIPModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
>>> model = CLIPModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a CLIPConfig from a CLIPTextConfig and a CLIPVisionConfig
>>> # Initializing a CLIPText and CLIPVision configuration
>>> config_text = CLIPTextConfig()
>>> config_vision = CLIPVisionConfig()
>>> config = CLIPConfig.from_text_vision_configs(config_text, config_vision)
from_text_vision_configs
< source >( text_config: CLIPTextConfig vision_config: CLIPVisionConfig **kwargs ) β CLIPConfig
Instantiate a CLIPConfig (or a derived class) from clip text model configuration and clip vision model configuration.
CLIPTextConfig
class transformers.CLIPTextConfig
< source >( vocab_size = 49408 hidden_size = 512 intermediate_size = 2048 num_hidden_layers = 12 num_attention_heads = 8 max_position_embeddings = 77 hidden_act = 'quick_gelu' layer_norm_eps = 1e-05 dropout = 0.0 attention_dropout = 0.0 initializer_range = 0.02 initializer_factor = 1.0 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 **kwargs )
Parameters
-
vocab_size (
int
, optional, defaults to 49408) — Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by theinputs_ids
passed when calling CLIPModel. - hidden_size (
int
, optional, defaults to 512) — Dimensionality of the encoder layers and the pooler layer. -
intermediate_size (
int
, optional, defaults to 2048) — Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder. - num_hidden_layers (
int
, optional, defaults to 12) — Number of hidden layers in the Transformer encoder. -
num_attention_heads (
int
, optional, defaults to 8) — Number of attention heads for each attention layer in the Transformer encoder. -
max_position_embeddings (
int
, optional, defaults to 77) — The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). - hidden_act (
str
orfunction
, optional, defaults to"quick_gelu"
) — The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu"
,"relu"
,"selu"
and"gelu_new"
`"quick_gelu"
are supported. layer_norm_eps (float
, optional, defaults to 1e-5): The epsilon used by the layer normalization layers. -
attention_dropout (
float
, optional, defaults to 0.0) — The dropout ratio for the attention probabilities. -
dropout (
float
, optional, defaults to 0.0) — The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. -
initializer_range (
float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices. - initializer_factor (`float“, optional, defaults to 1) — A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing).
This is the configuration class to store the configuration of a CLIPModel. It is used to instantiate an CLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIP openai/clip-vit-base-patch32 architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import CLIPTextConfig, CLIPTextModel
>>> # Initializing a CLIPTextConfig with openai/clip-vit-base-patch32 style configuration
>>> configuration = CLIPTextConfig()
>>> # Initializing a CLIPTextModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
>>> model = CLIPTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
CLIPVisionConfig
class transformers.CLIPVisionConfig
< source >( hidden_size = 768 intermediate_size = 3072 num_hidden_layers = 12 num_attention_heads = 12 num_channels = 3 image_size = 224 patch_size = 32 hidden_act = 'quick_gelu' layer_norm_eps = 1e-05 dropout = 0.0 attention_dropout = 0.0 initializer_range = 0.02 initializer_factor = 1.0 **kwargs )
Parameters
- hidden_size (
int
, optional, defaults to 768) — Dimensionality of the encoder layers and the pooler layer. -
intermediate_size (
int
, optional, defaults to 3072) — Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder. - num_hidden_layers (
int
, optional, defaults to 12) — Number of hidden layers in the Transformer encoder. -
num_attention_heads (
int
, optional, defaults to 12) — Number of attention heads for each attention layer in the Transformer encoder. -
image_size (
int
, optional, defaults to 224) — The size (resolution) of each image. -
patch_size (
int
, optional, defaults to 32) — The size (resolution) of each patch. - hidden_act (
str
orfunction
, optional, defaults to"quick_gelu"
) — The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu"
,"relu"
,"selu"
and"gelu_new"
`"quick_gelu"
are supported. layer_norm_eps (float
, optional, defaults to 1e-5): The epsilon used by the layer normalization layers. -
dropout (
float
, optional, defaults to 0.0) — The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. -
attention_dropout (
float
, optional, defaults to 0.0) — The dropout ratio for the attention probabilities. -
initializer_range (
float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices. - initializer_factor (`float“, optional, defaults to 1) — A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing).
This is the configuration class to store the configuration of a CLIPModel. It is used to instantiate an CLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIP openai/clip-vit-base-patch32 architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import CLIPVisionConfig, CLIPVisionModel
>>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration
>>> configuration = CLIPVisionConfig()
>>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
>>> model = CLIPVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
CLIPTokenizer
class transformers.CLIPTokenizer
< source >( vocab_file merges_file errors = 'replace' unk_token = '<|endoftext|>' bos_token = '<|startoftext|>' eos_token = '<|endoftext|>' pad_token = '<|endoftext|>' **kwargs )
Parameters
-
vocab_file (
str
) — Path to the vocabulary file. -
merges_file (
str
) — Path to the merges file. -
errors (
str
, optional, defaults to"replace"
) — Paradigm to follow when decoding bytes to UTF-8. See bytes.decode for more information. -
unk_token (
str
, optional, defaults to<|endoftext|>
) — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. -
bos_token (
str
, optional, defaults to<|endoftext|>
) — The beginning of sequence token. -
eos_token (
str
, optional, defaults to<|endoftext|>
) — The end of sequence token.
Construct a CLIP tokenizer. Based on byte-level Byte-Pair-Encoding.
This tokenizer inherits from PreTrainedTokenizer which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
build_inputs_with_special_tokens
< source >(
token_ids_0: typing.List[int]
token_ids_1: typing.Optional[typing.List[int]] = None
)
β
List[int]
Parameters
-
token_ids_0 (
List[int]
) — List of IDs to which the special tokens will be added. -
token_ids_1 (
List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
List of input IDs with the appropriate special tokens.
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A CLIP sequence has the following format:
- single sequence:
<|startoftext|> X <|endoftext|>
Pairs of sequences are not the expected use case, but they will be handled without a separator.
get_special_tokens_mask
< source >(
token_ids_0: typing.List[int]
token_ids_1: typing.Optional[typing.List[int]] = None
already_has_special_tokens: bool = False
)
β
List[int]
Parameters
-
token_ids_0 (
List[int]
) — List of IDs. -
token_ids_1 (
List[int]
, optional) — Optional second list of IDs for sequence pairs. -
already_has_special_tokens (
bool
, optional, defaults toFalse
) — Whether or not the token list is already formatted with special tokens for the model.
Returns
List[int]
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
method.
create_token_type_ids_from_sequences
< source >(
token_ids_0: typing.List[int]
token_ids_1: typing.Optional[typing.List[int]] = None
)
β
List[int]
Create a mask from the two sequences passed. CLIP does not make use of token type ids, therefore a list of zeros is returned.
CLIPTokenizerFast
class transformers.CLIPTokenizerFast
< source >( vocab_file = None merges_file = None tokenizer_file = None unk_token = '<|endoftext|>' bos_token = '<|startoftext|>' eos_token = '<|endoftext|>' pad_token = '<|endoftext|>' **kwargs )
Parameters
-
vocab_file (
str
) — Path to the vocabulary file. -
merges_file (
str
) — Path to the merges file. -
unk_token (
str
, optional, defaults to<|endoftext|>
) — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. -
bos_token (
str
, optional, defaults to<|endoftext|>
) — The beginning of sequence token. -
eos_token (
str
, optional, defaults to<|endoftext|>
) — The end of sequence token.
Construct a βfastβ CLIP tokenizer (backed by HuggingFaceβs tokenizers library). Based on byte-level Byte-Pair-Encoding.
This tokenizer inherits from PreTrainedTokenizerFast which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
build_inputs_with_special_tokens
< source >(
token_ids_0: typing.List[int]
token_ids_1: typing.Optional[typing.List[int]] = None
)
β
List[int]
Parameters
-
token_ids_0 (
List[int]
) — List of IDs to which the special tokens will be added. -
token_ids_1 (
List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
List of input IDs with the appropriate special tokens.
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A CLIP sequence has the following format:
- single sequence:
<|startoftext|> X <|endoftext|>
Pairs of sequences are not the expected use case, but they will be handled without a separator.
create_token_type_ids_from_sequences
< source >(
token_ids_0: typing.List[int]
token_ids_1: typing.Optional[typing.List[int]] = None
)
β
List[int]
Create a mask from the two sequences passed. CLIP does not make use of token type ids, therefore a list of zeros is returned.
CLIPFeatureExtractor
class transformers.CLIPFeatureExtractor
< source >( do_resize = True size = 224 resample = <Resampling.BICUBIC: 3> do_center_crop = True crop_size = 224 do_normalize = True image_mean = None image_std = None do_convert_rgb = True **kwargs )
Parameters
-
do_resize (
bool
, optional, defaults toTrue
) — Whether to resize the input to a certainsize
. -
size (
int
, optional, defaults to 224) — Resize the input to the given size. Only has an effect ifdo_resize
is set toTrue
. -
resample (
int
, optional, defaults toPIL.Image.Resampling.BICUBIC
) — An optional resampling filter. This can be one ofPIL.Image.Resampling.NEAREST
,PIL.Image.Resampling.BOX
,PIL.Image.Resampling.BILINEAR
,PIL.Image.Resampling.HAMMING
,PIL.Image.Resampling.BICUBIC
orPIL.Image.Resampling.LANCZOS
. Only has an effect ifdo_resize
is set toTrue
. -
do_center_crop (
bool
, optional, defaults toTrue
) — Whether to crop the input at the center. If the input size is smaller thancrop_size
along any edge, the image is padded with 0’s and then center cropped. -
crop_size (
int
, optional, defaults to 224) — Desired output size when applying center-cropping. Only has an effect ifdo_center_crop
is set toTrue
. -
do_normalize (
bool
, optional, defaults toTrue
) — Whether or not to normalize the input withimage_mean
andimage_std
. -
image_mean (
List[int]
, defaults to[0.485, 0.456, 0.406]
) — The sequence of means for each channel, to be used when normalizing images. -
image_std (
List[int]
, defaults to[0.229, 0.224, 0.225]
) — The sequence of standard deviations for each channel, to be used when normalizing images. -
convert_rgb (
bool
, defaults toTrue
) — Whether or not to convertPIL.Image.Image
intoRGB
format
Constructs a CLIP feature extractor.
This feature extractor inherits from FeatureExtractionMixin which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
CLIPProcessor
class transformers.CLIPProcessor
< source >( feature_extractor tokenizer )
Parameters
- feature_extractor (CLIPFeatureExtractor) — The feature extractor is a required input.
- tokenizer (CLIPTokenizerFast) — The tokenizer is a required input.
Constructs a CLIP processor which wraps a CLIP feature extractor and a CLIP tokenizer into a single processor.
CLIPProcessor offers all the functionalities of CLIPFeatureExtractor and CLIPTokenizerFast. See the
__call__()
and decode() for more information.
This method forwards all its arguments to CLIPTokenizerFastβs batch_decode(). Please refer to the docstring of this method for more information.
This method forwards all its arguments to CLIPTokenizerFastβs decode(). Please refer to the docstring of this method for more information.
CLIPModel
class transformers.CLIPModel
< source >( config: CLIPConfig )
Parameters
- config (CLIPConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
This model is a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >(
input_ids: typing.Optional[torch.LongTensor] = None
pixel_values: typing.Optional[torch.FloatTensor] = None
attention_mask: typing.Optional[torch.Tensor] = None
position_ids: typing.Optional[torch.LongTensor] = None
return_loss: typing.Optional[bool] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
β
transformers.models.clip.modeling_clip.CLIPOutput
or tuple(torch.FloatTensor)
Parameters
-
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using CLIPTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. -
pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using CLIPFeatureExtractor. SeeCLIPFeatureExtractor.__call__()
for details. -
return_loss (
bool
, optional) — Whether or not to return the contrastive loss. -
output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.models.clip.modeling_clip.CLIPOutput
or tuple(torch.FloatTensor)
A transformers.models.clip.modeling_clip.CLIPOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPConfig'>
) and inputs.
- loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenreturn_loss
isTrue
) β Contrastive loss for image-text similarity. - logits_per_image:(
torch.FloatTensor
of shape(image_batch_size, text_batch_size)
) β The scaled dot product scores betweenimage_embeds
andtext_embeds
. This represents the image-text similarity scores. - logits_per_text:(
torch.FloatTensor
of shape(text_batch_size, image_batch_size)
) β The scaled dot product scores betweentext_embeds
andimage_embeds
. This represents the text-image similarity scores. - text_embeds(
torch.FloatTensor
of shape(batch_size, output_dim
) β The text embeddings obtained by applying the projection layer to the pooled output of CLIPTextModel. - image_embeds(
torch.FloatTensor
of shape(batch_size, output_dim
) β The image embeddings obtained by applying the projection layer to the pooled output of CLIPVisionModel. - text_model_output(
BaseModelOutputWithPooling
): The output of the CLIPTextModel. - vision_model_output(
BaseModelOutputWithPooling
): The output of the CLIPVisionModel.
The CLIPModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import CLIPProcessor, CLIPModel
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
get_text_features
< source >(
input_ids: typing.Optional[torch.Tensor] = None
attention_mask: typing.Optional[torch.Tensor] = None
position_ids: typing.Optional[torch.Tensor] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
β
text_features (torch.FloatTensor
of shape (batch_size, output_dim
)
Parameters
-
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using CLIPTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. -
output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
text_features (torch.FloatTensor
of shape (batch_size, output_dim
)
The text embeddings obtained by applying the projection layer to the pooled output of CLIPTextModel.
The CLIPModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import CLIPTokenizer, CLIPModel
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
get_image_features
< source >(
pixel_values: typing.Optional[torch.FloatTensor] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
β
image_features (torch.FloatTensor
of shape (batch_size, output_dim
)
Parameters
-
pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using CLIPFeatureExtractor. SeeCLIPFeatureExtractor.__call__()
for details. -
output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
image_features (torch.FloatTensor
of shape (batch_size, output_dim
)
The image embeddings obtained by applying the projection layer to the pooled output of CLIPVisionModel.
The CLIPModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import CLIPProcessor, CLIPModel
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
CLIPTextModel
forward
< source >(
input_ids: typing.Optional[torch.Tensor] = None
attention_mask: typing.Optional[torch.Tensor] = None
position_ids: typing.Optional[torch.Tensor] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
β
transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)
Parameters
-
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using CLIPTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. -
output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)
A transformers.modeling_outputs.BaseModelOutputWithPooling or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPTextConfig'>
) and inputs.
-
last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
torch.FloatTensor
of shape(batch_size, hidden_size)
) β Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The CLIPTextModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import CLIPTokenizer, CLIPTextModel
>>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
CLIPVisionModel
forward
< source >(
pixel_values: typing.Optional[torch.FloatTensor] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
β
transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)
Parameters
-
pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using CLIPFeatureExtractor. SeeCLIPFeatureExtractor.__call__()
for details. -
output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)
A transformers.modeling_outputs.BaseModelOutputWithPooling or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPVisionConfig'>
) and inputs.
-
last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
torch.FloatTensor
of shape(batch_size, hidden_size)
) β Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The CLIPVisionModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import CLIPProcessor, CLIPVisionModel
>>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
TFCLIPModel
class transformers.TFCLIPModel
< source >( *args **kwargs )
Parameters
- config (CLIPConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers
accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit()
things should βjust workβ for you - just
pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second
format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with
the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with
input_ids
only and nothing else:model(input_ids)
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you donβt need to worry about any of this, as you can just pass inputs like you would to any other Python function!
call
< source >(
input_ids: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[tensorflow.python.keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, tensorflow.python.keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, tensorflow.python.keras.engine.keras_tensor.KerasTensor, NoneType] = None
pixel_values: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[tensorflow.python.keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, tensorflow.python.keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, tensorflow.python.keras.engine.keras_tensor.KerasTensor, NoneType] = None
attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
position_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
return_loss: typing.Optional[bool] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
training: bool = False
)
β
transformers.models.clip.modeling_tf_clip.TFCLIPOutput
or tuple(tf.Tensor)
Parameters
-
input_ids (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
`Dict[str, tf.Tensor]
orDict[str, np.ndarray]
and each example must have the shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using BertTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
-
pixel_values (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
Dict[str, tf.Tensor]
orDict[str, np.ndarray]
and each example must have the shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using CLIPFeatureExtractor. SeeCLIPFeatureExtractor.__call__()
for details. -
attention_mask (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
position_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. -
return_loss (
bool
, optional) — Whether or not to return the contrastive loss. -
output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. -
training (
bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
Returns
transformers.models.clip.modeling_tf_clip.TFCLIPOutput
or tuple(tf.Tensor)
A transformers.models.clip.modeling_tf_clip.TFCLIPOutput
or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (<class 'transformers.models.clip.configuration_clip.CLIPConfig'>
) and inputs.
- loss (
tf.Tensor
of shape(1,)
, optional, returned whenreturn_loss
isTrue
) β Contrastive loss for image-text similarity. - logits_per_image:(
tf.Tensor
of shape(image_batch_size, text_batch_size)
) β The scaled dot product scores betweenimage_embeds
andtext_embeds
. This represents the image-text similarity scores. - logits_per_text:(
tf.Tensor
of shape(text_batch_size, image_batch_size)
) β The scaled dot product scores betweentext_embeds
andimage_embeds
. This represents the text-image similarity scores. - text_embeds(
tf.Tensor
of shape(batch_size, output_dim
) β The text embeddings obtained by applying the projection layer to the pooled output of TFCLIPTextModel. - image_embeds(
tf.Tensor
of shape(batch_size, output_dim
) β The image embeddings obtained by applying the projection layer to the pooled output of TFCLIPVisionModel. - text_model_output(
~modeling_tf_utils.TFBaseModelOutputWithPooling
): The output of the TFCLIPTextModel. - vision_model_output(
~modeling_tf_utils.TFBaseModelOutputWithPooling
): The output of the TFCLIPVisionModel.
The TFCLIPModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> import tensorflow as tf
>>> from PIL import Image
>>> import requests
>>> from transformers import CLIPProcessor, TFCLIPModel
>>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="tf", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = tf.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities
get_text_features
< source >(
input_ids: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[tensorflow.python.keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, tensorflow.python.keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, tensorflow.python.keras.engine.keras_tensor.KerasTensor, NoneType] = None
attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
position_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
training: bool = False
)
β
text_features (tf.Tensor
of shape (batch_size, output_dim
)
Parameters
-
input_ids (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
`Dict[str, tf.Tensor]
orDict[str, np.ndarray]
and each example must have the shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using BertTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
-
attention_mask (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
position_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. -
output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. -
training (
bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
Returns
text_features (tf.Tensor
of shape (batch_size, output_dim
)
The text embeddings obtained by applying the projection layer to the pooled output of TFCLIPTextModel.
The TFCLIPModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import CLIPTokenizer, TFCLIPModel
>>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")
>>> text_features = model.get_text_features(**inputs)
get_image_features
< source >(
pixel_values: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[tensorflow.python.keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, tensorflow.python.keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, tensorflow.python.keras.engine.keras_tensor.KerasTensor, NoneType] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
training: bool = False
)
β
image_features (tf.Tensor
of shape (batch_size, output_dim
)
Parameters
-
pixel_values (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
`Dict[str, tf.Tensor]
orDict[str, np.ndarray]
and each example must have the shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using CLIPFeatureExtractor. SeeCLIPFeatureExtractor.__call__()
for details. output_attentions (bool
, optional): Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. -
training (
bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
Returns
image_features (tf.Tensor
of shape (batch_size, output_dim
)
The image embeddings obtained by applying the projection layer to the pooled output of TFCLIPVisionModel.
The TFCLIPModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import CLIPProcessor, TFCLIPModel
>>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="tf")
>>> image_features = model.get_image_features(**inputs)
TFCLIPTextModel
call
< source >(
input_ids: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[tensorflow.python.keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, tensorflow.python.keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, tensorflow.python.keras.engine.keras_tensor.KerasTensor, NoneType] = None
attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
position_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
training: typing.Optional[bool] = False
)
β
transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling or tuple(tf.Tensor)
Parameters
-
input_ids (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
`Dict[str, tf.Tensor]
orDict[str, np.ndarray]
and each example must have the shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using BertTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.
-
attention_mask (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
position_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. -
output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. -
training (
bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
Returns
transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (<class 'transformers.models.clip.configuration_clip.CLIPTextConfig'>
) and inputs.
-
last_hidden_state (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
tf.Tensor
of shape(batch_size, hidden_size)
) β Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.This output is usually not a good summary of the semantic content of the input, youβre often better with averaging or pooling the sequence of hidden-states for the whole input sequence.
-
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFCLIPTextModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import CLIPTokenizer, TFCLIPTextModel
>>> model = TFCLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
TFCLIPVisionModel
call
< source >(
pixel_values: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[tensorflow.python.keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, tensorflow.python.keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, tensorflow.python.keras.engine.keras_tensor.KerasTensor, NoneType] = None
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
training: typing.Optional[bool] = False
)
β
transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling or tuple(tf.Tensor)
Parameters
-
pixel_values (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
`Dict[str, tf.Tensor]
orDict[str, np.ndarray]
and each example must have the shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using CLIPFeatureExtractor. SeeCLIPFeatureExtractor.__call__()
for details. output_attentions (bool
, optional): Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. -
training (
bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
Returns
transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (<class 'transformers.models.clip.configuration_clip.CLIPVisionConfig'>
) and inputs.
-
last_hidden_state (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
tf.Tensor
of shape(batch_size, hidden_size)
) β Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.This output is usually not a good summary of the semantic content of the input, youβre often better with averaging or pooling the sequence of hidden-states for the whole input sequence.
-
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFCLIPVisionModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import CLIPProcessor, TFCLIPVisionModel
>>> model = TFCLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
FlaxCLIPModel
class transformers.FlaxCLIPModel
< source >( config: CLIPConfig input_shape: typing.Optional[typing.Tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
Parameters
- config (CLIPConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
-
dtype (
jax.numpy.dtype
, optional, defaults tojax.numpy.float32
) — The data type of the computation. Can be one ofjax.numpy.float32
,jax.numpy.float16
(on GPUs) andjax.numpy.bfloat16
(on TPUs).This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given
dtype
.Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >(
input_ids
pixel_values
attention_mask = None
position_ids = None
params: dict = None
dropout_rng: PRNGKey = None
train: bool = False
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
β
transformers.models.clip.modeling_flax_clip.FlaxCLIPOutput
or tuple(torch.FloatTensor)
Parameters
-
input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using CLIPTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
position_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. -
pixel_values (
numpy.ndarray
of shape(batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using CLIPFeatureExtractor. SeeCLIPFeatureExtractor.__call__()
for details. -
output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.models.clip.modeling_flax_clip.FlaxCLIPOutput
or tuple(torch.FloatTensor)
A transformers.models.clip.modeling_flax_clip.FlaxCLIPOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPConfig'>
) and inputs.
- logits_per_image:(
jnp.ndarray
of shape(image_batch_size, text_batch_size)
) β The scaled dot product scores betweenimage_embeds
andtext_embeds
. This represents the image-text similarity scores. - logits_per_text:(
jnp.ndarray
of shape(text_batch_size, image_batch_size)
) β The scaled dot product scores betweentext_embeds
andimage_embeds
. This represents the text-image similarity scores. - text_embeds(
jnp.ndarray
of shape(batch_size, output_dim
) β The text embeddings obtained by applying the projection layer to the pooled output of FlaxCLIPTextModel. - image_embeds(
jnp.ndarray
of shape(batch_size, output_dim
) β The image embeddings obtained by applying the projection layer to the pooled output of FlaxCLIPVisionModel. - text_model_output(
FlaxBaseModelOutputWithPooling
): The output of the FlaxCLIPTextModel. - vision_model_output(
FlaxBaseModelOutputWithPooling
): The output of the FlaxCLIPVisionModel.
The FlaxCLIPPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> import jax
>>> from PIL import Image
>>> import requests
>>> from transformers import CLIPProcessor, FlaxCLIPModel
>>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="np", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = jax.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities
get_text_features
< source >(
input_ids
attention_mask = None
position_ids = None
params: dict = None
dropout_rng: PRNGKey = None
train = False
)
β
text_features (jnp.ndarray
of shape (batch_size, output_dim
)
Parameters
-
input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using CLIPTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
Returns
text_features (jnp.ndarray
of shape (batch_size, output_dim
)
The text embeddings obtained by applying the projection layer to the pooled output of FlaxCLIPTextModel.
Examples:
>>> from transformers import CLIPTokenizer, FlaxCLIPModel
>>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np")
>>> text_features = model.get_text_features(**inputs)
get_image_features
< source >(
pixel_values
params: dict = None
dropout_rng: PRNGKey = None
train = False
)
β
image_features (jnp.ndarray
of shape (batch_size, output_dim
)
Parameters
-
pixel_values (
numpy.ndarray
of shape(batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using CLIPFeatureExtractor. SeeCLIPFeatureExtractor.__call__()
for details.
Returns
image_features (jnp.ndarray
of shape (batch_size, output_dim
)
The image embeddings obtained by applying the projection layer to the pooled output of FlaxCLIPVisionModel
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import CLIPProcessor, FlaxCLIPModel
>>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="np")
>>> image_features = model.get_image_features(**inputs)
FlaxCLIPTextModel
class transformers.FlaxCLIPTextModel
< source >( config: CLIPTextConfig input_shape = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
__call__
< source >(
input_ids
attention_mask = None
position_ids = None
params: dict = None
dropout_rng: PRNGKey = None
train: bool = False
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
β
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)
Parameters
-
input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using CLIPTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
-
attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
-
position_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. -
output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPTextConfig'>
) and inputs.
-
last_hidden_state (
jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
jnp.ndarray
of shape(batch_size, hidden_size)
) β Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. -
hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxCLIPTextPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import CLIPTokenizer, FlaxCLIPTextModel
>>> model = FlaxCLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooler_output = outputs.pooler_output # pooled (EOS token) states
FlaxCLIPVisionModel
class transformers.FlaxCLIPVisionModel
< source >( config: CLIPVisionConfig input_shape: typing.Optional[typing.Tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
__call__
< source >(
pixel_values
params: dict = None
dropout_rng: PRNGKey = None
train: bool = False
output_attentions: typing.Optional[bool] = None
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
β
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)
Parameters
-
pixel_values (
numpy.ndarray
of shape(batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using CLIPFeatureExtractor. SeeCLIPFeatureExtractor.__call__()
for details. -
output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPVisionConfig'>
) and inputs.
-
last_hidden_state (
jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
jnp.ndarray
of shape(batch_size, hidden_size)
) β Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. -
hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxCLIPVisionPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from PIL import Image
>>> import requests
>>> from transformers import CLIPProcessor, FlaxCLIPVisionModel
>>> model = FlaxCLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooler_output = outputs.pooler_output # pooled CLS states