Transformers documentation

๐Ÿค— Accelerate๋ฅผ ํ™œ์šฉํ•œ ๋ถ„์‚ฐ ํ•™์Šต

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v4.47.1).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

๐Ÿค— Accelerate๋ฅผ ํ™œ์šฉํ•œ ๋ถ„์‚ฐ ํ•™์Šต

๋ชจ๋ธ์ด ์ปค์ง€๋ฉด์„œ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ๋Š” ์ œํ•œ๋œ ํ•˜๋“œ์›จ์–ด์—์„œ ๋” ํฐ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ  ํ›ˆ๋ จ ์†๋„๋ฅผ ๋ช‡ ๋ฐฐ๋กœ ๊ฐ€์†ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ „๋žต์œผ๋กœ ๋“ฑ์žฅํ–ˆ์Šต๋‹ˆ๋‹ค. Hugging Face์—์„œ๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ํ•˜๋‚˜์˜ ๋จธ์‹ ์— ์—ฌ๋Ÿฌ ๊ฐœ์˜ GPU๋ฅผ ์‚ฌ์šฉํ•˜๋“  ์—ฌ๋Ÿฌ ๋จธ์‹ ์— ์—ฌ๋Ÿฌ ๊ฐœ์˜ GPU๋ฅผ ์‚ฌ์šฉํ•˜๋“  ๋ชจ๋“  ์œ ํ˜•์˜ ๋ถ„์‚ฐ ์„ค์ •์—์„œ ๐Ÿค— Transformers ๋ชจ๋ธ์„ ์‰ฝ๊ฒŒ ํ›ˆ๋ จํ•  ์ˆ˜ ์žˆ๋„๋ก ๋•๊ธฐ ์œ„ํ•ด ๐Ÿค— Accelerate ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค. ์ด ํŠœํ† ๋ฆฌ์–ผ์—์„œ๋Š” ๋ถ„์‚ฐ ํ™˜๊ฒฝ์—์„œ ํ›ˆ๋ จํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ธฐ๋ณธ PyTorch ํ›ˆ๋ จ ๋ฃจํ”„๋ฅผ ์ปค์Šคํ„ฐ๋งˆ์ด์ฆˆํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋ด…์‹œ๋‹ค.

์„ค์ •

๐Ÿค— Accelerate ์„ค์น˜ ์‹œ์ž‘ํ•˜๊ธฐ:

pip install accelerate

๊ทธ ๋‹ค์Œ, Accelerator ๊ฐ์ฒด๋ฅผ ๋ถˆ๋Ÿฌ์˜ค๊ณ  ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. Accelerator๋Š” ์ž๋™์œผ๋กœ ๋ถ„์‚ฐ ์„ค์ • ์œ ํ˜•์„ ๊ฐ์ง€ํ•˜๊ณ  ํ›ˆ๋ จ์— ํ•„์š”ํ•œ ๋ชจ๋“  ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ์ดˆ๊ธฐํ™”ํ•ฉ๋‹ˆ๋‹ค. ์žฅ์น˜์— ๋ชจ๋ธ์„ ๋ช…์‹œ์ ์œผ๋กœ ๋ฐฐ์น˜ํ•  ํ•„์š”๋Š” ์—†์Šต๋‹ˆ๋‹ค.

>>> from accelerate import Accelerator

>>> accelerator = Accelerator()

๊ฐ€์†ํ™”๋ฅผ ์œ„ํ•œ ์ค€๋น„

๋‹ค์Œ ๋‹จ๊ณ„๋Š” ๊ด€๋ จ๋œ ๋ชจ๋“  ํ›ˆ๋ จ ๊ฐ์ฒด๋ฅผ prepare ๋ฉ”์†Œ๋“œ์— ์ „๋‹ฌํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ํ›ˆ๋ จ ๋ฐ ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ๋กœ๋”, ๋ชจ๋ธ ๋ฐ ์˜ตํ‹ฐ๋งˆ์ด์ €๊ฐ€ ํฌํ•จ๋ฉ๋‹ˆ๋‹ค:

>>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
...     train_dataloader, eval_dataloader, model, optimizer
... )

๋ฐฑ์›Œ๋“œ(Backward)

๋งˆ์ง€๋ง‰์œผ๋กœ ํ›ˆ๋ จ ๋ฃจํ”„์˜ ์ผ๋ฐ˜์ ์ธ loss.backward()๋ฅผ ๐Ÿค— Accelerate์˜ backward ๋ฉ”์†Œ๋“œ๋กœ ๋Œ€์ฒดํ•˜๊ธฐ๋งŒ ํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค:

>>> for epoch in range(num_epochs):
...     for batch in train_dataloader:
...         outputs = model(**batch)
...         loss = outputs.loss
...         accelerator.backward(loss)

...         optimizer.step()
...         lr_scheduler.step()
...         optimizer.zero_grad()
...         progress_bar.update(1)

๋‹ค์Œ ์ฝ”๋“œ์—์„œ ๋ณผ ์ˆ˜ ์žˆ๋“ฏ์ด, ํ›ˆ๋ จ ๋ฃจํ”„์— ์ฝ”๋“œ ๋„ค ์ค„๋งŒ ์ถ”๊ฐ€ํ•˜๋ฉด ๋ถ„์‚ฐ ํ•™์Šต์„ ํ™œ์„ฑํ™”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค!

+ from accelerate import Accelerator
  from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler

+ accelerator = Accelerator()

  model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
  optimizer = AdamW(model.parameters(), lr=3e-5)

- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
- model.to(device)

+ train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
+     train_dataloader, eval_dataloader, model, optimizer
+ )

  num_epochs = 3
  num_training_steps = num_epochs * len(train_dataloader)
  lr_scheduler = get_scheduler(
      "linear",
      optimizer=optimizer,
      num_warmup_steps=0,
      num_training_steps=num_training_steps
  )

  progress_bar = tqdm(range(num_training_steps))

  model.train()
  for epoch in range(num_epochs):
      for batch in train_dataloader:
-         batch = {k: v.to(device) for k, v in batch.items()}
          outputs = model(**batch)
          loss = outputs.loss
-         loss.backward()
+         accelerator.backward(loss)

          optimizer.step()
          lr_scheduler.step()
          optimizer.zero_grad()
          progress_bar.update(1)

ํ•™์Šต

๊ด€๋ จ ์ฝ”๋“œ๋ฅผ ์ถ”๊ฐ€ํ•œ ํ›„์—๋Š” ์Šคํฌ๋ฆฝํŠธ๋‚˜ Colaboratory์™€ ๊ฐ™์€ ๋…ธํŠธ๋ถ์—์„œ ํ›ˆ๋ จ์„ ์‹œ์ž‘ํ•˜์„ธ์š”.

์Šคํฌ๋ฆฝํŠธ๋กœ ํ•™์Šตํ•˜๊ธฐ

์Šคํฌ๋ฆฝํŠธ์—์„œ ํ›ˆ๋ จ์„ ์‹คํ–‰ํ•˜๋Š” ๊ฒฝ์šฐ, ๋‹ค์Œ ๋ช…๋ น์„ ์‹คํ–‰ํ•˜์—ฌ ๊ตฌ์„ฑ ํŒŒ์ผ์„ ์ƒ์„ฑํ•˜๊ณ  ์ €์žฅํ•ฉ๋‹ˆ๋‹ค:

accelerate config

Then launch your training with:

accelerate launch train.py

๋…ธํŠธ๋ถ์œผ๋กœ ํ•™์Šตํ•˜๊ธฐ

Collaboratory์˜ TPU๋ฅผ ์‚ฌ์šฉํ•˜๋ ค๋Š” ๊ฒฝ์šฐ, ๋…ธํŠธ๋ถ์—์„œ๋„ ๐Ÿค— Accelerate๋ฅผ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ›ˆ๋ จ์„ ๋‹ด๋‹นํ•˜๋Š” ๋ชจ๋“  ์ฝ”๋“œ๋ฅผ ํ•จ์ˆ˜๋กœ ๊ฐ์‹ธ์„œ notebook_launcher์— ์ „๋‹ฌํ•˜์„ธ์š”:

>>> from accelerate import notebook_launcher

>>> notebook_launcher(training_function)

๐Ÿค— Accelerate ๋ฐ ๋‹ค์–‘ํ•œ ๊ธฐ๋Šฅ์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ documentation๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

< > Update on GitHub