Transformers documentation

PEFT

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v4.49.0).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

PEFT

The PeftAdapterMixin provides functions from the PEFT library for managing adapters with Transformers. This mixin currently supports LoRA, IA3, and AdaLora. Prefix tuning methods (prompt tuning, prompt learning) aren’t supported because they can’t be injected into a torch module.

class transformers.integrations.PeftAdapterMixin

< >

( )

A class containing all functions for loading and using adapters weights that are supported in PEFT library. For more details about adapters and injecting them on a transformer-based model, check out the documentation of PEFT library: https://huggingface.co/docs/peft/index

Currently supported PEFT methods are all non-prefix tuning methods. Below is the list of supported PEFT methods that anyone can load, train and run with this mixin class:

Other PEFT models such as prompt tuning, prompt learning are out of scope as these adapters are not “injectable” into a torch module. For using these methods, please refer to the usage guide of PEFT library.

With this mixin, if the correct PEFT version is installed, it is possible to:

  • Load an adapter stored on a local path or in a remote Hub repository, and inject it in the model
  • Attach new adapters in the model and train them with Trainer or by your own.
  • Attach multiple adapters and iteratively activate / deactivate them
  • Activate / deactivate all adapters from the model.
  • Get the state_dict of the active adapter.

load_adapter

< >

( peft_model_id: typing.Optional[str] = None adapter_name: typing.Optional[str] = None revision: typing.Optional[str] = None token: typing.Optional[str] = None device_map: typing.Optional[str] = 'auto' max_memory: typing.Optional[str] = None offload_folder: typing.Optional[str] = None offload_index: typing.Optional[int] = None peft_config: typing.Dict[str, typing.Any] = None adapter_state_dict: typing.Optional[typing.Dict[str, ForwardRef('torch.Tensor')]] = None low_cpu_mem_usage: bool = False is_trainable: bool = False adapter_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None )

Parameters

  • peft_model_id (str, optional) — The identifier of the model to look for on the Hub, or a local path to the saved adapter config file and adapter weights.
  • adapter_name (str, optional) — The adapter name to use. If not set, will use the default adapter.
  • revision (str, optional, defaults to "main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so revision can be any identifier allowed by git.

    To test a pull request you made on the Hub, you can pass revision="refs/pr/<pr_number>".

  • token (str, optional) — Whether to use authentication token to load the remote folder. Useful to load private repositories that are on HuggingFace Hub. You might need to call huggingface-cli login and paste your tokens to cache it.
  • device_map (str or Dict[str, Union[int, str, torch.device]] or int or torch.device, optional) — A map that specifies where each submodule should go. It doesn’t need to be refined to each parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the same device. If we only pass the device (e.g., "cpu", "cuda:1", "mps", or a GPU ordinal rank like 1) on which the model will be allocated, the device map will map the entire model to this device. Passing device_map = 0 means put the whole model on GPU 0.

    To have Accelerate compute the most optimized device_map automatically, set device_map="auto". For more information about each option see designing a device map.

  • max_memory (Dict, optional) — A dictionary device identifier to maximum memory. Will default to the maximum memory available for each GPU and the available CPU RAM if unset.
  • offload_folder (str or os.PathLike, optional) — If the device_map contains any value "disk", the folder where we will offload weights.
  • offload_index (int, optional) — offload_index argument to be passed to accelerate.dispatch_model method.
  • peft_config (Dict[str, Any], optional) — The configuration of the adapter to add, supported adapters are non-prefix tuning and adaption prompts methods. This argument is used in case users directly pass PEFT state dicts
  • adapter_state_dict (Dict[str, torch.Tensor], optional) — The state dict of the adapter to load. This argument is used in case users directly pass PEFT state dicts
  • low_cpu_mem_usage (bool, optional, defaults to False) — Reduce memory usage while loading the PEFT adapter. This should also speed up the loading process. Requires PEFT version 0.13.0 or higher.
  • is_trainable (bool, optional, defaults to False) — Whether the adapter should be trainable or not. If False, the adapter will be frozen and can only be used for inference.
  • adapter_kwargs (Dict[str, Any], optional) — Additional keyword arguments passed along to the from_pretrained method of the adapter config and find_adapter_config_file method.

Load adapter weights from file or remote Hub folder. If you are not familiar with adapters and PEFT methods, we invite you to read more about them on PEFT official documentation: https://huggingface.co/docs/peft

Requires peft as a backend to load the adapter weights.

add_adapter

< >

( adapter_config adapter_name: typing.Optional[str] = None )

Parameters

  • adapter_config (~peft.PeftConfig) — The configuration of the adapter to add, supported adapters are non-prefix tuning and adaption prompts methods
  • adapter_name (str, optional, defaults to "default") — The name of the adapter to add. If no name is passed, a default name is assigned to the adapter.

If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT official documentation: https://huggingface.co/docs/peft

Adds a fresh new adapter to the current model for training purpose. If no adapter name is passed, a default name is assigned to the adapter to follow the convention of PEFT library (in PEFT we use “default” as the default adapter name).

set_adapter

< >

( adapter_name: typing.Union[typing.List[str], str] )

Parameters

  • adapter_name (Union[List[str], str]) — The name of the adapter to set. Can be also a list of strings to set multiple adapters.

If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT official documentation: https://huggingface.co/docs/peft

Sets a specific adapter by forcing the model to use a that adapter and disable the other adapters.

disable_adapters

< >

( )

If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT official documentation: https://huggingface.co/docs/peft

Disable all adapters that are attached to the model. This leads to inferring with the base model only.

enable_adapters

< >

( )

If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT official documentation: https://huggingface.co/docs/peft

Enable adapters that are attached to the model.

active_adapters

< >

( )

If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT official documentation: https://huggingface.co/docs/peft

Gets the current active adapters of the model. In case of multi-adapter inference (combining multiple adapters for inference) returns the list of all active adapters so that users can deal with them accordingly.

For previous PEFT versions (that does not support multi-adapter inference), module.active_adapter will return a single string.

get_adapter_state_dict

< >

( adapter_name: typing.Optional[str] = None )

Parameters

  • adapter_name (str, optional) — The name of the adapter to get the state dict from. If no name is passed, the active adapter is used.

If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT official documentation: https://huggingface.co/docs/peft

Gets the adapter state dict that should only contain the weights tensors of the specified adapter_name adapter. If no adapter_name is passed, the active adapter is used.

< > Update on GitHub