timm documentation

MobileNet v2

You are viewing v1.0.13 version. A newer version v1.0.14 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

MobileNet v2

MobileNetV2 is a convolutional neural network architecture that seeks to perform well on mobile devices. It is based on an inverted residual structure where the residual connections are between the bottleneck layers. The intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity. As a whole, the architecture of MobileNetV2 contains the initial fully convolution layer with 32 filters, followed by 19 residual bottleneck layers.

How do I use this model on an image?

To load a pretrained model:

>>> import timm
>>> model = timm.create_model('mobilenetv2_100', pretrained=True)
>>> model.eval()

To load and preprocess the image:

>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension

To get the model predictions:

>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])

To get the top-5 predictions class names:

>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename) 
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]

Replace the model name with the variant you want to use, e.g. mobilenetv2_100. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the timm feature extraction examples, just change the name of the model you want to use.

How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

>>> model = timm.create_model('mobilenetv2_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)

To finetune on your own dataset, you have to write a training loop or adapt timm’s training script to use your dataset.

How do I train this model?

You can follow the timm recipe scripts for training a new model afresh.

Citation

@article{DBLP:journals/corr/abs-1801-04381,
  author    = {Mark Sandler and
               Andrew G. Howard and
               Menglong Zhu and
               Andrey Zhmoginov and
               Liang{-}Chieh Chen},
  title     = {Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification,
               Detection and Segmentation},
  journal   = {CoRR},
  volume    = {abs/1801.04381},
  year      = {2018},
  url       = {http://arxiv.org/abs/1801.04381},
  archivePrefix = {arXiv},
  eprint    = {1801.04381},
  timestamp = {Tue, 12 Jan 2021 15:30:06 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1801-04381.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
< > Update on GitHub