timm documentation

EfficientNet (Knapsack Pruned)

You are viewing v0.9.16 version. A newer version v1.0.11 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

EfficientNet (Knapsack Pruned)

EfficientNet is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a compound coefficient. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use2N 2^N times more computational resources, then we can simply increase the network depth byαN \alpha ^ N , width byβN \beta ^ N , and image size byγN \gamma ^ N , whereα,β,γ \alpha, \beta, \gamma are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficientϕ \phi to uniformly scales network width, depth, and resolution in a principled way.

The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image.

The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of MobileNetV2, in addition to squeeze-and-excitation blocks.

This collection consists of pruned EfficientNet models.

How do I use this model on an image?

To load a pretrained model:

>>> import timm
>>> model = timm.create_model('efficientnet_b1_pruned', pretrained=True)
>>> model.eval()

To load and preprocess the image:

>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension

To get the model predictions:

>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])

To get the top-5 predictions class names:

>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename)
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]

Replace the model name with the variant you want to use, e.g. efficientnet_b1_pruned. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the timm feature extraction examples, just change the name of the model you want to use.

How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

>>> model = timm.create_model('efficientnet_b1_pruned', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)

To finetune on your own dataset, you have to write a training loop or adapt timm’s training script to use your dataset.

How do I train this model?

You can follow the timm recipe scripts for training a new model afresh.

Citation

@misc{tan2020efficientnet,
      title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks},
      author={Mingxing Tan and Quoc V. Le},
      year={2020},
      eprint={1905.11946},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
@misc{aflalo2020knapsack,
      title={Knapsack Pruning with Inner Distillation},
      author={Yonathan Aflalo and Asaf Noy and Ming Lin and Itamar Friedman and Lihi Zelnik},
      year={2020},
      eprint={2002.08258},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}