Pruning
π€ Optimum provides an optimum.intel.neural_compressor
package that enables you to apply magnitude pruning on many model hosted on the π€ hub using the Intel Neural Compressor pruning API.
IncPruner
class optimum.intel.IncPruner
< source >( model: typing.Union[transformers.modeling_utils.PreTrainedModel, torch.nn.modules.module.Module] config_path_or_obj: typing.Union[str, optimum.intel.neural_compressor.configuration.IncPruningConfig] tokenizer: typing.Optional[transformers.tokenization_utils_base.PreTrainedTokenizerBase] = None eval_func: typing.Optional[typing.Callable] = None train_func: typing.Optional[typing.Callable] = None )
from_config
< source >( model_name_or_path: str inc_config: typing.Union[optimum.intel.neural_compressor.configuration.IncPruningConfig, str, NoneType] = None config_name: str = None **kwargs ) β pruner
Parameters
-
model_name_or_path (
str
) — Repository name in the Hugging Face Hub or path to a local directory hosting the model. -
inc_config (
Union[IncPruningConfig, str]
, optional) — Configuration file containing all the information related to the pruning strategy. Can be either:- an instance of the class
IncPruningConfig
, - a string valid as input to
IncPruningConfig.from_pretrained
.
- an instance of the class
-
config_name (
str
, optional) — Name of the configuration file. -
cache_dir (
str
, optional) — Path to a directory in which a downloaded configuration should be cached if the standard cache should not be used. -
force_download (
bool
, optional, defaults toFalse
) — Whether or not to force to (re-)download the configuration files and override the cached versions if they exist. -
resume_download (
bool
, optional, defaults toFalse
) — Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. -
revision(
str
, optional) — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevision
can be any identifier allowed by git. -
eval_func (
Callable
, optional) — Evaluation function to evaluate the tuning objective. -
train_func (
Callable
, optional) — Training function which will be combined with pruning.
Returns
pruner
IncPruner object.
Instantiate an IncPruner object from a configuration file which can either be hosted on huggingface.co or from a local directory path.