Optimum documentation

Quantization

You are viewing v1.19.0 version. A newer version v1.23.3 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Quantization

🤗 Optimum provides an optimum.furiosa package that enables you to apply quantization on many models hosted on the Hugging Face Hub using the Furiosa quantization tool.

The quantization process is abstracted via the FuriosaAIConfig and the FuriosaAIQuantizer classes. The former allows you to specify how quantization should be done, while the latter effectively handles quantization.

Static Quantization example

The FuriosaAIQuantizer class can be used to quantize statically your ONNX model. Below you will find an easy end-to-end example on how to quantize statically eugenecamus/resnet-50-base-beans-demo.

>>> from functools import partial
>>> from pathlib import Path
>>> from transformers import AutoFeatureExtractor
>>> from optimum.furiosa import FuriosaAIQuantizer, FuriosaAIModelForImageClassification
>>> from optimum.furiosa.configuration import AutoCalibrationConfig
>>> from optimum.furiosa.utils import export_model_to_onnx

>>> model_id = "eugenecamus/resnet-50-base-beans-demo"

# Convert PyTorch model convert to ONNX and create Quantizer and setup config

>>> feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)

>>> batch_size = 1
>>> image_size = feature_extractor.size["shortest_edge"]
>>> num_labels = 3
>>> onnx_model_name = "model.onnx"
>>> output_dir = "output"
>>> onnx_model_path = Path(output_dir) / onnx_model_name

>>> export_model_to_onnx(
...    model_id,
...    save_dir=output_dir,
...    input_shape_dict={"pixel_values": [batch_size, 3, image_size, image_size]},
...    output_shape_dict={"logits": [batch_size, num_labels]},
...    file_name=onnx_model_name,
)
>>> quantizer = FuriosaAIQuantizer.from_pretrained(output_dir, file_name=onnx_model_name)
>>> qconfig = QuantizationConfig()

# Create the calibration dataset
>>> def preprocess_fn(ex, feature_extractor):
...     return feature_extractor(ex["image"])

>>> calibration_dataset = quantizer.get_calibration_dataset(
...     "beans",
...     preprocess_function=partial(preprocess_fn, feature_extractor=feature_extractor),
...     num_samples=50,
...     dataset_split="train",
... )

# Create the calibration configuration containing the parameters related to calibration.
>>> calibration_config = AutoCalibrationConfig.mse_asym(calibration_dataset)

# Perform the calibration step: computes the activations quantization ranges
>>> ranges = quantizer.fit(
...     dataset=calibration_dataset,
...     calibration_config=calibration_config,
... )

# Apply static quantization on the model
>>> model_quantized_path = quantizer.quantize(
...     save_dir=output,
...     calibration_tensors_range=ranges,
...     quantization_config=qconfig,
... )