You are viewing v1.10.1 version.
A newer version
v1.23.3 is available.
Run Inference
This section shows how to run inference-only workloads on Gaudi. For more advanced information about how to speed up inference, check out this guide.
With GaudiTrainer
You can find below a template to perform inference with a GaudiTrainer
instance where we want to compute the accuracy over the given dataset:
import evaluate
metric = evaluate.load("accuracy")
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def my_compute_metrics(p):
return metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids)
# Trainer initialization
trainer = GaudiTrainer(
model=my_model,
gaudi_config=my_gaudi_config,
args=my_args,
train_dataset=None,
eval_dataset=eval_dataset,
compute_metrics=my_compute_metrics,
tokenizer=my_tokenizer,
data_collator=my_data_collator,
)
# Run inference
metrics = trainer.evaluate()
The variable my_args
should contain some inference-specific arguments, you can take a look here to see the arguments that can be interesting to set for inference.
In our Examples
All our examples contain instructions for running inference with a given model on a given dataset.
The reasoning is the same for every example: run the example script with --do_eval
and --per_device_eval_batch_size
and without --do_train
.
A simple template is the following:
python path_to_the_example_script \ --model_name_or_path my_model_name \ --gaudi_config_name my_gaudi_config_name \ --dataset_name my_dataset_name \ --do_eval \ --per_device_eval_batch_size my_batch_size \ --output_dir path_to_my_output_dir \ --use_habana \ --use_lazy_mode \ --use_hpu_graphs_for_inference