Diffusers documentation

DPMSolverSinglestepScheduler

Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

DPMSolverSinglestepScheduler

DPMSolverSinglestepScheduler is a single step scheduler from DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps and DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models by Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu.

DPMSolver (and the improved version DPMSolver++) is a fast dedicated high-order solver for diffusion ODEs with convergence order guarantee. Empirically, DPMSolver sampling with only 20 steps can generate high-quality samples, and it can generate quite good samples even in 10 steps.

The original implementation can be found at LuChengTHU/dpm-solver.

Tips

It is recommended to set solver_order to 2 for guide sampling, and solver_order=3 for unconditional sampling.

Dynamic thresholding from Imagen is supported, and for pixel-space diffusion models, you can set both algorithm_type="dpmsolver++" and thresholding=True to use dynamic thresholding. This thresholding method is unsuitable for latent-space diffusion models such as Stable Diffusion.

DPMSolverSinglestepScheduler

class diffusers.DPMSolverSinglestepScheduler

< >

( num_train_timesteps: int = 1000 beta_start: float = 0.0001 beta_end: float = 0.02 beta_schedule: str = 'linear' trained_betas: typing.Optional[numpy.ndarray] = None solver_order: int = 2 prediction_type: str = 'epsilon' thresholding: bool = False dynamic_thresholding_ratio: float = 0.995 sample_max_value: float = 1.0 algorithm_type: str = 'dpmsolver++' solver_type: str = 'midpoint' lower_order_final: bool = False use_karras_sigmas: typing.Optional[bool] = False use_exponential_sigmas: typing.Optional[bool] = False use_beta_sigmas: typing.Optional[bool] = False use_flow_sigmas: typing.Optional[bool] = False flow_shift: typing.Optional[float] = 1.0 final_sigmas_type: typing.Optional[str] = 'zero' lambda_min_clipped: float = -inf variance_type: typing.Optional[str] = None )

Parameters

  • num_train_timesteps (int, defaults to 1000) — The number of diffusion steps to train the model.
  • beta_start (float, defaults to 0.0001) — The starting beta value of inference.
  • beta_end (float, defaults to 0.02) — The final beta value.
  • beta_schedule (str, defaults to "linear") — The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from linear, scaled_linear, or squaredcos_cap_v2.
  • trained_betas (np.ndarray, optional) — Pass an array of betas directly to the constructor to bypass beta_start and beta_end.
  • solver_order (int, defaults to 2) — The DPMSolver order which can be 1 or 2 or 3. It is recommended to use solver_order=2 for guided sampling, and solver_order=3 for unconditional sampling.
  • prediction_type (str, defaults to epsilon, optional) — Prediction type of the scheduler function; can be epsilon (predicts the noise of the diffusion process), sample (directly predicts the noisy sample) or v_prediction` (see section 2.4 of Imagen Video paper).
  • thresholding (bool, defaults to False) — Whether to use the “dynamic thresholding” method. This is unsuitable for latent-space diffusion models such as Stable Diffusion.
  • dynamic_thresholding_ratio (float, defaults to 0.995) — The ratio for the dynamic thresholding method. Valid only when thresholding=True.
  • sample_max_value (float, defaults to 1.0) — The threshold value for dynamic thresholding. Valid only when thresholding=True and algorithm_type="dpmsolver++".
  • algorithm_type (str, defaults to dpmsolver++) — Algorithm type for the solver; can be dpmsolver or dpmsolver++ or sde-dpmsolver++. The dpmsolver type implements the algorithms in the DPMSolver paper, and the dpmsolver++ type implements the algorithms in the DPMSolver++ paper. It is recommended to use dpmsolver++ or sde-dpmsolver++ with solver_order=2 for guided sampling like in Stable Diffusion.
  • solver_type (str, defaults to midpoint) — Solver type for the second-order solver; can be midpoint or heun. The solver type slightly affects the sample quality, especially for a small number of steps. It is recommended to use midpoint solvers.
  • lower_order_final (bool, defaults to True) — Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
  • use_karras_sigmas (bool, optional, defaults to False) — Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If True, the sigmas are determined according to a sequence of noise levels {σi}.
  • use_exponential_sigmas (bool, optional, defaults to False) — Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
  • use_beta_sigmas (bool, optional, defaults to False) — Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to Beta Sampling is All You Need for more information.
  • final_sigmas_type (str, optional, defaults to "zero") — The final sigma value for the noise schedule during the sampling process. If "sigma_min", the final sigma is the same as the last sigma in the training schedule. If zero, the final sigma is set to 0.
  • lambda_min_clipped (float, defaults to -inf) — Clipping threshold for the minimum value of lambda(t) for numerical stability. This is critical for the cosine (squaredcos_cap_v2) noise schedule.
  • variance_type (str, optional) — Set to “learned” or “learned_range” for diffusion models that predict variance. If set, the model’s output contains the predicted Gaussian variance.

DPMSolverSinglestepScheduler is a fast dedicated high-order solver for diffusion ODEs.

This model inherits from SchedulerMixin and ConfigMixin. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.

convert_model_output

< >

( model_output: Tensor *args sample: Tensor = None **kwargs ) torch.Tensor

Parameters

  • model_output (torch.Tensor) — The direct output from the learned diffusion model.
  • sample (torch.Tensor) — A current instance of a sample created by the diffusion process.

Returns

torch.Tensor

The converted model output.

Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an integral of the data prediction model.

The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise prediction and data prediction models.

dpm_solver_first_order_update

< >

( model_output: Tensor *args sample: Tensor = None noise: typing.Optional[torch.Tensor] = None **kwargs ) torch.Tensor

Parameters

  • model_output (torch.Tensor) — The direct output from the learned diffusion model.
  • timestep (int) — The current discrete timestep in the diffusion chain.
  • prev_timestep (int) — The previous discrete timestep in the diffusion chain.
  • sample (torch.Tensor) — A current instance of a sample created by the diffusion process.

Returns

torch.Tensor

The sample tensor at the previous timestep.

One step for the first-order DPMSolver (equivalent to DDIM).

get_order_list

< >

( num_inference_steps: int )

Parameters

  • num_inference_steps (int) — The number of diffusion steps used when generating samples with a pre-trained model.

Computes the solver order at each time step.

scale_model_input

< >

( sample: Tensor *args **kwargs ) torch.Tensor

Parameters

  • sample (torch.Tensor) — The input sample.

Returns

torch.Tensor

A scaled input sample.

Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep.

set_begin_index

< >

( begin_index: int = 0 )

Parameters

  • begin_index (int) — The begin index for the scheduler.

Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

set_timesteps

< >

( num_inference_steps: int = None device: typing.Union[str, torch.device] = None timesteps: typing.Optional[typing.List[int]] = None )

Parameters

  • num_inference_steps (int) — The number of diffusion steps used when generating samples with a pre-trained model.
  • device (str or torch.device, optional) — The device to which the timesteps should be moved to. If None, the timesteps are not moved.
  • timesteps (List[int], optional) — Custom timesteps used to support arbitrary spacing between timesteps. If None, then the default timestep spacing strategy of equal spacing between timesteps schedule is used. If timesteps is passed, num_inference_steps must be None.

Sets the discrete timesteps used for the diffusion chain (to be run before inference).

singlestep_dpm_solver_second_order_update

< >

( model_output_list: typing.List[torch.Tensor] *args sample: Tensor = None noise: typing.Optional[torch.Tensor] = None **kwargs ) torch.Tensor

Parameters

  • model_output_list (List[torch.Tensor]) — The direct outputs from learned diffusion model at current and latter timesteps.
  • timestep (int) — The current and latter discrete timestep in the diffusion chain.
  • prev_timestep (int) — The previous discrete timestep in the diffusion chain.
  • sample (torch.Tensor) — A current instance of a sample created by the diffusion process.

Returns

torch.Tensor

The sample tensor at the previous timestep.

One step for the second-order singlestep DPMSolver that computes the solution at time prev_timestep from the time timestep_list[-2].

singlestep_dpm_solver_third_order_update

< >

( model_output_list: typing.List[torch.Tensor] *args sample: Tensor = None noise: typing.Optional[torch.Tensor] = None **kwargs ) torch.Tensor

Parameters

  • model_output_list (List[torch.Tensor]) — The direct outputs from learned diffusion model at current and latter timesteps.
  • timestep (int) — The current and latter discrete timestep in the diffusion chain.
  • prev_timestep (int) — The previous discrete timestep in the diffusion chain.
  • sample (torch.Tensor) — A current instance of a sample created by diffusion process.

Returns

torch.Tensor

The sample tensor at the previous timestep.

One step for the third-order singlestep DPMSolver that computes the solution at time prev_timestep from the time timestep_list[-3].

singlestep_dpm_solver_update

< >

( model_output_list: typing.List[torch.Tensor] *args sample: Tensor = None order: int = None noise: typing.Optional[torch.Tensor] = None **kwargs ) torch.Tensor

Parameters

  • model_output_list (List[torch.Tensor]) — The direct outputs from learned diffusion model at current and latter timesteps.
  • timestep (int) — The current and latter discrete timestep in the diffusion chain.
  • prev_timestep (int) — The previous discrete timestep in the diffusion chain.
  • sample (torch.Tensor) — A current instance of a sample created by diffusion process.
  • order (int) — The solver order at this step.

Returns

torch.Tensor

The sample tensor at the previous timestep.

One step for the singlestep DPMSolver.

step

< >

( model_output: Tensor timestep: typing.Union[int, torch.Tensor] sample: Tensor generator = None return_dict: bool = True ) SchedulerOutput or tuple

Parameters

  • model_output (torch.Tensor) — The direct output from learned diffusion model.
  • timestep (int) — The current discrete timestep in the diffusion chain.
  • sample (torch.Tensor) — A current instance of a sample created by the diffusion process.
  • return_dict (bool) — Whether or not to return a SchedulerOutput or tuple.

Returns

SchedulerOutput or tuple

If return_dict is True, SchedulerOutput is returned, otherwise a tuple is returned where the first element is the sample tensor.

Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with the singlestep DPMSolver.

SchedulerOutput

class diffusers.schedulers.scheduling_utils.SchedulerOutput

< >

( prev_sample: Tensor )

Parameters

  • prev_sample (torch.Tensor of shape (batch_size, num_channels, height, width) for images) — Computed sample (x_{t-1}) of previous timestep. prev_sample should be used as next model input in the denoising loop.

Base class for the output of a scheduler’s step function.

< > Update on GitHub