Diffusers documentation

CogVideoXTransformer3DModel

You are viewing v0.30.0 version. A newer version v0.32.1 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

CogVideoXTransformer3DModel

A Diffusion Transformer model for 3D data from CogVideoX was introduced in CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer by Tsinghua University & ZhipuAI.

The model can be loaded with the following code snippet.

from diffusers import CogVideoXTransformer3DModel

vae = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-2b", subfolder="transformer", torch_dtype=torch.float16).to("cuda")

CogVideoXTransformer3DModel

class diffusers.CogVideoXTransformer3DModel

< >

( num_attention_heads: int = 30 attention_head_dim: int = 64 in_channels: Optional = 16 out_channels: Optional = 16 flip_sin_to_cos: bool = True freq_shift: int = 0 time_embed_dim: int = 512 text_embed_dim: int = 4096 num_layers: int = 30 dropout: float = 0.0 attention_bias: bool = True sample_width: int = 90 sample_height: int = 60 sample_frames: int = 49 patch_size: int = 2 temporal_compression_ratio: int = 4 max_text_seq_length: int = 226 activation_fn: str = 'gelu-approximate' timestep_activation_fn: str = 'silu' norm_elementwise_affine: bool = True norm_eps: float = 1e-05 spatial_interpolation_scale: float = 1.875 temporal_interpolation_scale: float = 1.0 )

Parameters

  • num_attention_heads (int, optional, defaults to 16) — The number of heads to use for multi-head attention.
  • attention_head_dim (int, optional, defaults to 88) — The number of channels in each head.
  • in_channels (int, optional) — The number of channels in the input.
  • out_channels (int, optional) — The number of channels in the output.
  • num_layers (int, optional, defaults to 1) — The number of layers of Transformer blocks to use.
  • dropout (float, optional, defaults to 0.0) — The dropout probability to use.
  • cross_attention_dim (int, optional) — The number of encoder_hidden_states dimensions to use.
  • attention_bias (bool, optional) — Configure if the TransformerBlocks attention should contain a bias parameter.
  • sample_size (int, optional) — The width of the latent images (specify if the input is discrete). This is fixed during training since it is used to learn a number of position embeddings.
  • patch_size (int, optional) — The size of the patches to use in the patch embedding layer.
  • activation_fn (str, optional, defaults to "geglu") — Activation function to use in feed-forward.
  • num_embeds_ada_norm ( int, optional) — The number of diffusion steps used during training. Pass if at least one of the norm_layers is AdaLayerNorm. This is fixed during training since it is used to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for up to but not more steps than num_embeds_ada_norm.
  • norm_type (str, optional, defaults to "layer_norm") — The type of normalization to use. Options are "layer_norm" or "ada_layer_norm".
  • norm_elementwise_affine (bool, optional, defaults to True) — Whether or not to use elementwise affine in normalization layers.
  • norm_eps (float, optional, defaults to 1e-5) — The epsilon value to use in normalization layers.
  • caption_channels (int, optional) — The number of channels in the caption embeddings.
  • video_length (int, optional) — The number of frames in the video-like data.

A Transformer model for video-like data in CogVideoX.

Transformer2DModelOutput

class diffusers.models.modeling_outputs.Transformer2DModelOutput

< >

( sample: torch.Tensor )

Parameters

  • sample (torch.Tensor of shape (batch_size, num_channels, height, width) or (batch size, num_vector_embeds - 1, num_latent_pixels) if Transformer2DModel is discrete) — The hidden states output conditioned on the encoder_hidden_states input. If discrete, returns probability distributions for the unnoised latent pixels.

The output of Transformer2DModel.

< > Update on GitHub