PixArtTransformer2DModel
A Transformer model for image-like data from PixArt-Alpha and PixArt-Sigma.
PixArtTransformer2DModel
class diffusers.PixArtTransformer2DModel
< source >( num_attention_heads: int = 16 attention_head_dim: int = 72 in_channels: int = 4 out_channels: Optional = 8 num_layers: int = 28 dropout: float = 0.0 norm_num_groups: int = 32 cross_attention_dim: Optional = 1152 attention_bias: bool = True sample_size: int = 128 patch_size: int = 2 activation_fn: str = 'gelu-approximate' num_embeds_ada_norm: Optional = 1000 upcast_attention: bool = False norm_type: str = 'ada_norm_single' norm_elementwise_affine: bool = False norm_eps: float = 1e-06 interpolation_scale: Optional = None use_additional_conditions: Optional = None caption_channels: Optional = None attention_type: Optional = 'default' )
Parameters
- num_attention_heads (int, optional, defaults to 16) — The number of heads to use for multi-head attention.
- attention_head_dim (int, optional, defaults to 72) — The number of channels in each head.
- in_channels (int, defaults to 4) — The number of channels in the input.
- out_channels (int, optional) — The number of channels in the output. Specify this parameter if the output channel number differs from the input.
- num_layers (int, optional, defaults to 28) — The number of layers of Transformer blocks to use.
- dropout (float, optional, defaults to 0.0) — The dropout probability to use within the Transformer blocks.
- norm_num_groups (int, optional, defaults to 32) — Number of groups for group normalization within Transformer blocks.
- cross_attention_dim (int, optional) — The dimensionality for cross-attention layers, typically matching the encoder’s hidden dimension.
- attention_bias (bool, optional, defaults to True) — Configure if the Transformer blocks’ attention should contain a bias parameter.
- sample_size (int, defaults to 128) — The width of the latent images. This parameter is fixed during training.
- patch_size (int, defaults to 2) — Size of the patches the model processes, relevant for architectures working on non-sequential data.
- activation_fn (str, optional, defaults to “gelu-approximate”) — Activation function to use in feed-forward networks within Transformer blocks.
- num_embeds_ada_norm (int, optional, defaults to 1000) — Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during inference.
- upcast_attention (bool, optional, defaults to False) — If true, upcasts the attention mechanism dimensions for potentially improved performance.
- norm_type (str, optional, defaults to “ada_norm_zero”) — Specifies the type of normalization used, can be ‘ada_norm_zero’.
- norm_elementwise_affine (bool, optional, defaults to False) — If true, enables element-wise affine parameters in the normalization layers.
- norm_eps (float, optional, defaults to 1e-6) — A small constant added to the denominator in normalization layers to prevent division by zero.
- interpolation_scale (int, optional) — Scale factor to use during interpolating the position embeddings.
- use_additional_conditions (bool, optional) — If we’re using additional conditions as inputs.
- attention_type (str, optional, defaults to “default”) — Kind of attention mechanism to be used.
- caption_channels (int, optional, defaults to None) — Number of channels to use for projecting the caption embeddings.
- use_linear_projection (bool, optional, defaults to False) — Deprecated argument. Will be removed in a future version.
- num_vector_embeds (bool, optional, defaults to False) — Deprecated argument. Will be removed in a future version.
A 2D Transformer model as introduced in PixArt family of models (https://arxiv.org/abs/2310.00426, https://arxiv.org/abs/2403.04692).
forward
< source >( hidden_states: Tensor encoder_hidden_states: Optional = None timestep: Optional = None added_cond_kwargs: Dict = None cross_attention_kwargs: Dict = None attention_mask: Optional = None encoder_attention_mask: Optional = None return_dict: bool = True )
Parameters
- hidden_states (
torch.FloatTensor
of shape(batch size, channel, height, width)
) — Inputhidden_states
. - encoder_hidden_states (
torch.FloatTensor
of shape(batch size, sequence len, embed dims)
, optional) — Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. - timestep (
torch.LongTensor
, optional) — Used to indicate denoising step. Optional timestep to be applied as an embedding inAdaLayerNorm
. added_cond_kwargs — (Dict[str, Any]
, optional): Additional conditions to be used as inputs. - cross_attention_kwargs (
Dict[str, Any]
, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessor
as defined underself.processor
in diffusers.models.attention_processor. - attention_mask (
torch.Tensor
, optional) — An attention mask of shape(batch, key_tokens)
is applied toencoder_hidden_states
. If1
the mask is kept, otherwise if0
it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to “discard” tokens. - encoder_attention_mask (
torch.Tensor
, optional) — Cross-attention mask applied toencoder_hidden_states
. Two formats supported:- Mask
(batch, sequence_length)
True = keep, False = discard. - Bias
(batch, 1, sequence_length)
0 = keep, -10000 = discard.
If
ndim == 2
: will be interpreted as a mask, then converted into a bias consistent with the format above. This bias will be added to the cross-attention scores. - Mask
- return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a UNet2DConditionOutput instead of a plain tuple.
The PixArtTransformer2DModel forward method.