UNet2DModel
The UNet model was originally introduced by Ronneberger et al for biomedical image segmentation, but it is also commonly used in 🤗 Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in 🤗 Diffusers, depending on it’s number of dimensions and whether it is a conditional model or not. This is a 2D UNet model.
The abstract from the paper is:
There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net.
UNet2DModel
class diffusers.UNet2DModel
< source >( sample_size: typing.Union[int, typing.Tuple[int, int], NoneType] = None in_channels: int = 3 out_channels: int = 3 center_input_sample: bool = False time_embedding_type: str = 'positional' freq_shift: int = 0 flip_sin_to_cos: bool = True down_block_types: typing.Tuple[str] = ('DownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D') up_block_types: typing.Tuple[str] = ('AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'UpBlock2D') block_out_channels: typing.Tuple[int] = (224, 448, 672, 896) layers_per_block: int = 2 mid_block_scale_factor: float = 1 downsample_padding: int = 1 downsample_type: str = 'conv' upsample_type: str = 'conv' dropout: float = 0.0 act_fn: str = 'silu' attention_head_dim: typing.Optional[int] = 8 norm_num_groups: int = 32 attn_norm_num_groups: typing.Optional[int] = None norm_eps: float = 1e-05 resnet_time_scale_shift: str = 'default' add_attention: bool = True class_embed_type: typing.Optional[str] = None num_class_embeds: typing.Optional[int] = None num_train_timesteps: typing.Optional[int] = None )
Parameters
- sample_size (
int
orTuple[int, int]
, optional, defaults toNone
) — Height and width of input/output sample. Dimensions must be a multiple of2 ** (len(block_out_channels) - 1)
. - in_channels (
int
, optional, defaults to 3) — Number of channels in the input sample. - out_channels (
int
, optional, defaults to 3) — Number of channels in the output. - center_input_sample (
bool
, optional, defaults toFalse
) — Whether to center the input sample. - time_embedding_type (
str
, optional, defaults to"positional"
) — Type of time embedding to use. - freq_shift (
int
, optional, defaults to 0) — Frequency shift for Fourier time embedding. - flip_sin_to_cos (
bool
, optional, defaults toTrue
) — Whether to flip sin to cos for Fourier time embedding. - down_block_types (
Tuple[str]
, optional, defaults to("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D")
) — Tuple of downsample block types. - mid_block_type (
str
, optional, defaults to"UNetMidBlock2D"
) — Block type for middle of UNet, it can be eitherUNetMidBlock2D
orUnCLIPUNetMidBlock2D
. - up_block_types (
Tuple[str]
, optional, defaults to("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D")
) — Tuple of upsample block types. - block_out_channels (
Tuple[int]
, optional, defaults to(224, 448, 672, 896)
) — Tuple of block output channels. - layers_per_block (
int
, optional, defaults to2
) — The number of layers per block. - mid_block_scale_factor (
float
, optional, defaults to1
) — The scale factor for the mid block. - downsample_padding (
int
, optional, defaults to1
) — The padding for the downsample convolution. - downsample_type (
str
, optional, defaults toconv
) — The downsample type for downsampling layers. Choose between “conv” and “resnet” - upsample_type (
str
, optional, defaults toconv
) — The upsample type for upsampling layers. Choose between “conv” and “resnet” - dropout (
float
, optional, defaults to 0.0) — The dropout probability to use. - act_fn (
str
, optional, defaults to"silu"
) — The activation function to use. - attention_head_dim (
int
, optional, defaults to8
) — The attention head dimension. - norm_num_groups (
int
, optional, defaults to32
) — The number of groups for normalization. - attn_norm_num_groups (
int
, optional, defaults toNone
) — If set to an integer, a group norm layer will be created in the mid block’sAttention
layer with the given number of groups. If left asNone
, the group norm layer will only be created ifresnet_time_scale_shift
is set todefault
, and if created will havenorm_num_groups
groups. - norm_eps (
float
, optional, defaults to1e-5
) — The epsilon for normalization. - resnet_time_scale_shift (
str
, optional, defaults to"default"
) — Time scale shift config for ResNet blocks (seeResnetBlock2D
). Choose fromdefault
orscale_shift
. - class_embed_type (
str
, optional, defaults toNone
) — The type of class embedding to use which is ultimately summed with the time embeddings. Choose fromNone
,"timestep"
, or"identity"
. - num_class_embeds (
int
, optional, defaults toNone
) — Input dimension of the learnable embedding matrix to be projected totime_embed_dim
when performing class conditioning withclass_embed_type
equal toNone
.
A 2D UNet model that takes a noisy sample and a timestep and returns a sample shaped output.
This model inherits from ModelMixin. Check the superclass documentation for it’s generic methods implemented for all models (such as downloading or saving).
forward
< source >( sample: FloatTensor timestep: typing.Union[torch.Tensor, float, int] class_labels: typing.Optional[torch.Tensor] = None return_dict: bool = True ) → UNet2DOutput or tuple
Parameters
- sample (
torch.FloatTensor
) — The noisy input tensor with the following shape(batch, channel, height, width)
. - timestep (
torch.FloatTensor
orfloat
orint
) — The number of timesteps to denoise an input. - class_labels (
torch.FloatTensor
, optional, defaults toNone
) — Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a UNet2DOutput instead of a plain tuple.
Returns
UNet2DOutput or tuple
If return_dict
is True, an UNet2DOutput is returned, otherwise a tuple
is
returned where the first element is the sample tensor.
The UNet2DModel forward method.
UNet2DOutput
class diffusers.models.unet_2d.UNet2DOutput
< source >( sample: FloatTensor )
The output of UNet2DModel.