Latent Consistency Model Multistep Scheduler
Overview
Multistep and onestep scheduler (Algorithm 3) introduced alongside latent consistency models in the paper Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference by Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. This scheduler should be able to generate good samples from LatentConsistencyModelPipeline in 1-8 steps.
LCMScheduler
class diffusers.LCMScheduler
< source >( num_train_timesteps: int = 1000 beta_start: float = 0.00085 beta_end: float = 0.012 beta_schedule: str = 'scaled_linear' trained_betas: typing.Union[numpy.ndarray, typing.List[float], NoneType] = None original_inference_steps: int = 50 clip_sample: bool = False clip_sample_range: float = 1.0 set_alpha_to_one: bool = True steps_offset: int = 0 prediction_type: str = 'epsilon' thresholding: bool = False dynamic_thresholding_ratio: float = 0.995 sample_max_value: float = 1.0 timestep_spacing: str = 'leading' rescale_betas_zero_snr: bool = False )
Parameters
- num_train_timesteps (
int
, defaults to 1000) — The number of diffusion steps to train the model. - beta_start (
float
, defaults to 0.0001) — The startingbeta
value of inference. - beta_end (
float
, defaults to 0.02) — The finalbeta
value. - beta_schedule (
str
, defaults to"linear"
) — The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose fromlinear
,scaled_linear
, orsquaredcos_cap_v2
. - trained_betas (
np.ndarray
, optional) — Pass an array of betas directly to the constructor to bypassbeta_start
andbeta_end
. - original_inference_steps (
int
, optional, defaults to 50) — The default number of inference steps used to generate a linearly-spaced timestep schedule, from which we will ultimately takenum_inference_steps
evenly spaced timesteps to form the final timestep schedule. - clip_sample (
bool
, defaults toTrue
) — Clip the predicted sample for numerical stability. - clip_sample_range (
float
, defaults to 1.0) — The maximum magnitude for sample clipping. Valid only whenclip_sample=True
. - set_alpha_to_one (
bool
, defaults toTrue
) — Each diffusion step uses the alphas product value at that step and at the previous one. For the final step there is no previous alpha. When this option isTrue
the previous alpha product is fixed to1
, otherwise it uses the alpha value at step 0. - steps_offset (
int
, defaults to 0) — An offset added to the inference steps. You can use a combination ofoffset=1
andset_alpha_to_one=False
to make the last step use step 0 for the previous alpha product like in Stable Diffusion. - prediction_type (
str
, defaults toepsilon
, optional) — Prediction type of the scheduler function; can beepsilon
(predicts the noise of the diffusion process),sample
(directly predicts the noisy sample) or
v_prediction` (see section 2.4 of Imagen Video paper). - thresholding (
bool
, defaults toFalse
) — Whether to use the “dynamic thresholding” method. This is unsuitable for latent-space diffusion models such as Stable Diffusion. - dynamic_thresholding_ratio (
float
, defaults to 0.995) — The ratio for the dynamic thresholding method. Valid only whenthresholding=True
. - sample_max_value (
float
, defaults to 1.0) — The threshold value for dynamic thresholding. Valid only whenthresholding=True
. - timestep_spacing (
str
, defaults to"leading"
) — The way the timesteps should be scaled. Refer to Table 2 of the Common Diffusion Noise Schedules and Sample Steps are Flawed for more information. - rescale_betas_zero_snr (
bool
, defaults toFalse
) — Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and dark samples instead of limiting it to samples with medium brightness. Loosely related to--offset_noise
.
LCMScheduler
extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
non-Markovian guidance.
This model inherits from SchedulerMixin and ConfigMixin. ~ConfigMixin takes care of storing all config
attributes that are passed in the scheduler’s __init__
function, such as num_train_timesteps
. They can be
accessed via scheduler.config.num_train_timesteps
. SchedulerMixin provides general loading and saving
functionality via the SchedulerMixin.save_pretrained() and from_pretrained() functions.
scale_model_input
< source >( sample: FloatTensor timestep: typing.Optional[int] = None ) → torch.FloatTensor
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep.
set_timesteps
< source >( num_inference_steps: int device: typing.Union[str, torch.device] = None original_inference_steps: typing.Optional[int] = None strength: int = 1.0 )
Parameters
- num_inference_steps (
int
) — The number of diffusion steps used when generating samples with a pre-trained model. - device (
str
ortorch.device
, optional) — The device to which the timesteps should be moved to. IfNone
, the timesteps are not moved. - original_inference_steps (
int
, optional) — The original number of inference steps, which will be used to generate a linearly-spaced timestep schedule (which is different from the standarddiffusers
implementation). We will then takenum_inference_steps
timesteps from this schedule, evenly spaced in terms of indices, and use that as our final timestep schedule. If not set, this will default to theoriginal_inference_steps
attribute.
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
step
< source >( model_output: FloatTensor timestep: int sample: FloatTensor generator: typing.Optional[torch._C.Generator] = None return_dict: bool = True ) → ~schedulers.scheduling_utils.LCMSchedulerOutput
or tuple
Parameters
- model_output (
torch.FloatTensor
) — The direct output from learned diffusion model. - timestep (
float
) — The current discrete timestep in the diffusion chain. - sample (
torch.FloatTensor
) — A current instance of a sample created by the diffusion process. - generator (
torch.Generator
, optional) — A random number generator. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return aLCMSchedulerOutput
ortuple
.
Returns
~schedulers.scheduling_utils.LCMSchedulerOutput
or tuple
If return_dict is True
, LCMSchedulerOutput
is returned, otherwise a
tuple is returned where the first element is the sample tensor.
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).