Transformer Temporal
A Transformer model for video-like data.
TransformerTemporalModel
class diffusers.models.TransformerTemporalModel
< source >( num_attention_heads: int = 16 attention_head_dim: int = 88 in_channels: typing.Optional[int] = None out_channels: typing.Optional[int] = None num_layers: int = 1 dropout: float = 0.0 norm_num_groups: int = 32 cross_attention_dim: typing.Optional[int] = None attention_bias: bool = False sample_size: typing.Optional[int] = None activation_fn: str = 'geglu' norm_elementwise_affine: bool = True double_self_attention: bool = True )
Parameters
-
num_attention_heads (
int
, optional, defaults to 16) — The number of heads to use for multi-head attention. -
attention_head_dim (
int
, optional, defaults to 88) — The number of channels in each head. -
in_channels (
int
, optional) — The number of channels in the input and output (specify if the input is continuous). -
num_layers (
int
, optional, defaults to 1) — The number of layers of Transformer blocks to use. -
dropout (
float
, optional, defaults to 0.0) — The dropout probability to use. -
cross_attention_dim (
int
, optional) — The number ofencoder_hidden_states
dimensions to use. -
sample_size (
int
, optional) — The width of the latent images (specify if the input is discrete). This is fixed during training since it is used to learn a number of position embeddings. -
activation_fn (
str
, optional, defaults to"geglu"
) — Activation function to use in feed-forward. -
attention_bias (
bool
, optional) — Configure if theTransformerBlock
attention should contain a bias parameter. -
double_self_attention (
bool
, optional) — Configure if eachTransformerBlock
should contain two self-attention layers.
A Transformer model for video-like data.
forward
< source >(
hidden_states
encoder_hidden_states = None
timestep = None
class_labels = None
num_frames = 1
cross_attention_kwargs = None
return_dict: bool = True
)
→
TransformerTemporalModelOutput or tuple
Parameters
- hidden_states (
torch.LongTensor
of shape(batch size, num latent pixels)
if discrete,torch.FloatTensor
of shape(batch size, channel, height, width)
if continuous) — Input hidden_states. - encoder_hidden_states (
torch.LongTensor
of shape(batch size, encoder_hidden_states dim)
, optional) — Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. -
timestep (
torch.long
, optional) — Used to indicate denoising step. Optional timestep to be applied as an embedding inAdaLayerNorm
. -
class_labels (
torch.LongTensor
of shape(batch size, num classes)
, optional) — Used to indicate class labels conditioning. Optional class labels to be applied as an embedding inAdaLayerZeroNorm
. -
return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a UNet2DConditionOutput instead of a plain tuple.
Returns
TransformerTemporalModelOutput or tuple
If return_dict
is True, an TransformerTemporalModelOutput is
returned, otherwise a tuple
where the first element is the sample tensor.
The TransformerTemporal
forward method.
TransformerTemporalModelOutput
class diffusers.models.transformer_temporal.TransformerTemporalModelOutput
< source >( sample: FloatTensor )
The output of TransformerTemporalModel
.