Diffusers documentation
Latent upscaler
Latent upscaler
The Stable Diffusion latent upscaler model was created by Katherine Crowson in collaboration with Stability AI. It is used to enhance the output image resolution by a factor of 2 (see this demo notebook for a demonstration of the original implementation).
Make sure to check out the Stable Diffusion Tips section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
If you’re interested in using one of the official checkpoints for a task, explore the CompVis, Runway, and Stability AI Hub organizations!
StableDiffusionLatentUpscalePipeline
class diffusers.StableDiffusionLatentUpscalePipeline
< source >( vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet2DConditionModel scheduler: EulerDiscreteScheduler )
Parameters
- vae (AutoencoderKL) — Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
- text_encoder (CLIPTextModel) — Frozen text-encoder (clip-vit-large-patch14).
-
tokenizer (CLIPTokenizer) —
A
CLIPTokenizerto tokenize text. -
unet (UNet2DConditionModel) —
A
UNet2DConditionModelto denoise the encoded image latents. -
scheduler (SchedulerMixin) —
A EulerDiscreteScheduler to be used in combination with
unetto denoise the encoded image latents.
Pipeline for upscaling Stable Diffusion output image resolution by a factor of 2.
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
__call__
< source >(
prompt: typing.Union[str, typing.List[str]]
image: typing.Union[torch.FloatTensor, PIL.Image.Image, numpy.ndarray, typing.List[torch.FloatTensor], typing.List[PIL.Image.Image], typing.List[numpy.ndarray]] = None
num_inference_steps: int = 75
guidance_scale: float = 9.0
negative_prompt: typing.Union[typing.List[str], str, NoneType] = None
generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None
latents: typing.Optional[torch.FloatTensor] = None
output_type: typing.Optional[str] = 'pil'
return_dict: bool = True
callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = None
callback_steps: int = 1
)
→
StableDiffusionPipelineOutput or tuple
Parameters
-
prompt (
strorList[str]) — The prompt or prompts to guide image upscaling. -
image (
torch.FloatTensor,PIL.Image.Image,np.ndarray,List[torch.FloatTensor],List[PIL.Image.Image], orList[np.ndarray]) —Imageor tensor representing an image batch to be upscaled. If it’s a tensor, it can be either a latent output from a Stable Diffusion model or an image tensor in the range[-1, 1]. It is considered alatentifimage.shape[1]is4; otherwise, it is considered to be an image representation and encoded using this pipeline’svaeencoder. -
num_inference_steps (
int, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. -
guidance_scale (
float, optional, defaults to 7.5) — A higher guidance scale value encourages the model to generate images closely linked to the textpromptat the expense of lower image quality. Guidance scale is enabled whenguidance_scale > 1. -
negative_prompt (
strorList[str], optional) — The prompt or prompts to guide what to not include in image generation. If not defined, you need to passnegative_prompt_embedsinstead. Ignored when not using guidance (guidance_scale < 1). -
eta (
float, optional, defaults to 0.0) — Corresponds to parameter eta (η) from the DDIM paper. Only applies to the DDIMScheduler, and is ignored in other schedulers. -
generator (
torch.GeneratororList[torch.Generator], optional) — Atorch.Generatorto make generation deterministic. -
latents (
torch.FloatTensor, optional) — Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied randomgenerator. -
output_type (
str, optional, defaults to"pil") — The output format of the generated image. Choose betweenPIL.Imageornp.array. -
return_dict (
bool, optional, defaults toTrue) — Whether or not to return a StableDiffusionPipelineOutput instead of a plain tuple. -
callback (
Callable, optional) — A function that calls everycallback_stepssteps during inference. The function is called with the following arguments:callback(step: int, timestep: int, latents: torch.FloatTensor). -
callback_steps (
int, optional, defaults to 1) — The frequency at which thecallbackfunction is called. If not specified, the callback is called at every step.
Returns
StableDiffusionPipelineOutput or tuple
If return_dict is True, StableDiffusionPipelineOutput is returned,
otherwise a tuple is returned where the first element is a list with the generated images.
The call function to the pipeline for generation.
Examples:
>>> from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline
>>> import torch
>>> pipeline = StableDiffusionPipeline.from_pretrained(
... "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16
... )
>>> pipeline.to("cuda")
>>> model_id = "stabilityai/sd-x2-latent-upscaler"
>>> upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
>>> upscaler.to("cuda")
>>> prompt = "a photo of an astronaut high resolution, unreal engine, ultra realistic"
>>> generator = torch.manual_seed(33)
>>> low_res_latents = pipeline(prompt, generator=generator, output_type="latent").images
>>> with torch.no_grad():
... image = pipeline.decode_latents(low_res_latents)
>>> image = pipeline.numpy_to_pil(image)[0]
>>> image.save("../images/a1.png")
>>> upscaled_image = upscaler(
... prompt=prompt,
... image=low_res_latents,
... num_inference_steps=20,
... guidance_scale=0,
... generator=generator,
... ).images[0]
>>> upscaled_image.save("../images/a2.png")enable_sequential_cpu_offload
< source >( gpu_id: int = 0 device: typing.Union[torch.device, str] = 'cuda' )
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
torch.device('meta') and loaded to GPU only when their specific submodule has its forwardmethod called. Note that offloading happens on a submodule basis. Memory savings are higher than withenable_model_cpu_offload`, but performance is lower.
enable_attention_slicing
< source >( slice_size: typing.Union[str, int, NoneType] = 'auto' )
Parameters
-
slice_size (
strorint, optional, defaults to"auto") — When"auto", halves the input to the attention heads, so attention will be computed in two steps. If"max", maximum amount of memory will be saved by running only one slice at a time. If a number is provided, uses as many slices asattention_head_dim // slice_size. In this case,attention_head_dimmust be a multiple ofslice_size.
Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor in slices to compute attention in several steps. This is useful to save some memory in exchange for a small speed decrease.
Disable sliced attention computation. If enable_attention_slicing was previously called, attention is
computed in one step.
enable_xformers_memory_efficient_attention
< source >( attention_op: typing.Optional[typing.Callable] = None )
Parameters
-
attention_op (
Callable, optional) — Override the defaultNoneoperator for use asopargument to thememory_efficient_attention()function of xFormers.
Enable memory efficient attention from xFormers. When this option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed up during training is not guaranteed.
⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes precedent.
Examples:
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp
>>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
>>> pipe = pipe.to("cuda")
>>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
>>> # Workaround for not accepting attention shape using VAE for Flash Attention
>>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)Disable memory efficient attention from xFormers.
StableDiffusionPipelineOutput
class diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
< source >( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray] nsfw_content_detected: typing.Optional[typing.List[bool]] )
Parameters
-
images (
List[PIL.Image.Image]ornp.ndarray) — List of denoised PIL images of lengthbatch_sizeor NumPy array of shape(batch_size, height, width, num_channels). -
nsfw_content_detected (
List[bool]) — List indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content orNoneif safety checking could not be performed.
Output class for Stable Diffusion pipelines.