Diffusers documentation

HiDreamImageTransformer2DModel

Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

HiDreamImageTransformer2DModel

A Transformer model for image-like data from HiDream-I1.

The model can be loaded with the following code snippet.

from diffusers import HiDreamImageTransformer2DModel

transformer = HiDreamImageTransformer2DModel.from_pretrained("HiDream-ai/HiDream-I1-Full", subfolder="transformer", torch_dtype=torch.bfloat16)

Loading GGUF quantized checkpoints for HiDream-I1

GGUF checkpoints for the HiDreamImageTransformer2DModel can be loaded using ~FromOriginalModelMixin.from_single_file

import torch
from diffusers import GGUFQuantizationConfig, HiDreamImageTransformer2DModel

ckpt_path = "https://huggingface.co/city96/HiDream-I1-Dev-gguf/blob/main/hidream-i1-dev-Q2_K.gguf"
transformer = HiDreamImageTransformer2DModel.from_single_file(
    ckpt_path,
    quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
    torch_dtype=torch.bfloat16
)

HiDreamImageTransformer2DModel

class diffusers.HiDreamImageTransformer2DModel

< >

( patch_size: typing.Optional[int] = None in_channels: int = 64 out_channels: typing.Optional[int] = None num_layers: int = 16 num_single_layers: int = 32 attention_head_dim: int = 128 num_attention_heads: int = 20 caption_channels: typing.List[int] = None text_emb_dim: int = 2048 num_routed_experts: int = 4 num_activated_experts: int = 2 axes_dims_rope: typing.Tuple[int, int] = (32, 32) max_resolution: typing.Tuple[int, int] = (128, 128) llama_layers: typing.List[int] = None force_inference_output: bool = False )

Transformer2DModelOutput

class diffusers.models.modeling_outputs.Transformer2DModelOutput

< >

( sample: torch.Tensor )

Parameters

  • sample (torch.Tensor of shape (batch_size, num_channels, height, width) or (batch size, num_vector_embeds - 1, num_latent_pixels) if Transformer2DModel is discrete) — The hidden states output conditioned on the encoder_hidden_states input. If discrete, returns probability distributions for the unnoised latent pixels.

The output of Transformer2DModel.

< > Update on GitHub