Diffusers documentation
CosmosTransformer3DModel
CosmosTransformer3DModel
A Diffusion Transformer model for 3D video-like data was introduced in Cosmos World Foundation Model Platform for Physical AI by NVIDIA.
The model can be loaded with the following code snippet.
from diffusers import CosmosTransformer3DModel
transformer = CosmosTransformer3DModel.from_pretrained("nvidia/Cosmos-1.0-Diffusion-7B-Text2World", subfolder="transformer", torch_dtype=torch.bfloat16)CosmosTransformer3DModel
class diffusers.CosmosTransformer3DModel
< source >( in_channels: int = 16 out_channels: int = 16 num_attention_heads: int = 32 attention_head_dim: int = 128 num_layers: int = 28 mlp_ratio: float = 4.0 text_embed_dim: int = 1024 adaln_lora_dim: int = 256 max_size: typing.Tuple[int, int, int] = (128, 240, 240) patch_size: typing.Tuple[int, int, int] = (1, 2, 2) rope_scale: typing.Tuple[float, float, float] = (2.0, 1.0, 1.0) concat_padding_mask: bool = True extra_pos_embed_type: typing.Optional[str] = 'learnable' )
Parameters
- in_channels (
int, defaults to16) — The number of channels in the input. - out_channels (
int, defaults to16) — The number of channels in the output. - num_attention_heads (
int, defaults to32) — The number of heads to use for multi-head attention. - attention_head_dim (
int, defaults to128) — The number of channels in each attention head. - num_layers (
int, defaults to28) — The number of layers of transformer blocks to use. - mlp_ratio (
float, defaults to4.0) — The ratio of the hidden layer size to the input size in the feedforward network. - text_embed_dim (
int, defaults to4096) — Input dimension of text embeddings from the text encoder. - adaln_lora_dim (
int, defaults to256) — The hidden dimension of the Adaptive LayerNorm LoRA layer. - max_size (
Tuple[int, int, int], defaults to(128, 240, 240)) — The maximum size of the input latent tensors in the temporal, height, and width dimensions. - patch_size (
Tuple[int, int, int], defaults to(1, 2, 2)) — The patch size to use for patchifying the input latent tensors in the temporal, height, and width dimensions. - rope_scale (
Tuple[float, float, float], defaults to(2.0, 1.0, 1.0)) — The scaling factor to use for RoPE in the temporal, height, and width dimensions. - concat_padding_mask (
bool, defaults toTrue) — Whether to concatenate the padding mask to the input latent tensors. - extra_pos_embed_type (
str, optional, defaults tolearnable) — The type of extra positional embeddings to use. Can be one ofNoneorlearnable.
A Transformer model for video-like data used in Cosmos.
Transformer2DModelOutput
class diffusers.models.modeling_outputs.Transformer2DModelOutput
< source >( sample: torch.Tensor )
Parameters
- sample (
torch.Tensorof shape(batch_size, num_channels, height, width)or(batch size, num_vector_embeds - 1, num_latent_pixels)if Transformer2DModel is discrete) — The hidden states output conditioned on theencoder_hidden_statesinput. If discrete, returns probability distributions for the unnoised latent pixels.
The output of Transformer2DModel.