Builder classes
Builders
🤗 Datasets relies on two main classes during the dataset building process: DatasetBuilder and BuilderConfig.
class datasets.DatasetBuilder
< source >( cache_dir: typing.Optional[str] = None config_name: typing.Optional[str] = None hash: typing.Optional[str] = None base_path: typing.Optional[str] = None info: typing.Optional[datasets.info.DatasetInfo] = None features: typing.Optional[datasets.features.features.Features] = None use_auth_token: typing.Union[bool, str, NoneType] = None repo_id: typing.Optional[str] = None data_files: typing.Union[str, list, dict, datasets.data_files.DataFilesDict, NoneType] = None data_dir: typing.Optional[str] = None name = 'deprecated' **config_kwargs )
Parameters
-
cache_dir (str, optional) — Directory to cache data. Defaults to
"~/.cache/huggingface/datasets"
. -
config_name (str, optional) — Name of the dataset configuration.
It affects the data generated on disk: different configurations will have their own subdirectories and
versions.
If not provided, the default configuration is used (if it exists).
Added in 2.3.0
Parameter name was renamed to config_name.
-
hash (str, optional) — Hash specific to the dataset code. Used to update the caching directory when the
dataset loading script code is updated (to avoid reusing old data).
The typical caching directory (defined in
self._relative_data_dir
) is:name/version/hash/
. - base_path (str, optional) — Base path for relative paths that are used to download files. This can be a remote URL.
- features ([Features], optional) — Features types to use with this dataset. It can be used to change the Features types of a dataset, for example.
-
use_auth_token (str or bool, optional) — String or boolean to use as Bearer token for remote files on the
Datasets Hub. If True, will get token from
"~/.huggingface"
. - repo_id (str, optional) — ID of the dataset repository. Used to distinguish builders with the same name but not coming from the same namespace, for example “squad” and “lhoestq/squad” repo IDs. In the latter, the builder name would be “lhoestq___squad”.
- data_files (str or Sequence or Mapping, optional) — Path(s) to source data file(s). For builders like “csv” or “json” that need the user to specify data files. They can be either local or remote files. For convenience, you can use a DataFilesDict.
-
data_dir (str, optional) — Path to directory containing source data file(s).
Use only if data_files is not passed, in which case it is equivalent to passing
os.path.join(data_dir, "**")
as data_files. For builders that require manual download, it must be the path to the local directory containing the manually downloaded data. -
name (str) — Configuration name for the dataset.
Deprecated in 2.3.0
Use config_name instead.
- **config_kwargs (additional keyword arguments) — Keyword arguments to be passed to the corresponding builder configuration class, set on the class attribute [DatasetBuilder.BUILDER_CONFIG_CLASS]. The builder configuration class is [BuilderConfig] or a subclass of it.
Abstract base class for all datasets.
DatasetBuilder has 3 key methods:
- [DatasetBuilder.info]: Documents the dataset, including feature names, types, and shapes, version, splits, citation, etc.
- [DatasetBuilder.download_and_prepare]: Downloads the source data and writes it to disk.
- [DatasetBuilder.as_dataset]: Generates a [Dataset].
Configuration: Some DatasetBuilders expose multiple variants of the dataset by defining a [BuilderConfig] subclass and accepting a config object (or name) on construction. Configurable datasets expose a pre-defined set of configurations in [DatasetBuilder.builder_configs].
as_dataset
< source >( split: typing.Optional[datasets.splits.Split] = None run_post_process = True ignore_verifications = False in_memory = False )
Parameters
-
split (
datasets.Split
) — Which subset of the data to return. - run_post_process (bool, default=True) — Whether to run post-processing dataset transforms and/or add indexes.
- ignore_verifications (bool, default=False) — Whether to ignore the verifications of the downloaded/processed dataset information (checksums/size/splits/…).
- in_memory (bool, default=False) — Whether to copy the data in-memory.
Return a Dataset for the specified split.
download_and_prepare
< source >( download_config: typing.Optional[datasets.download.download_config.DownloadConfig] = None download_mode: typing.Optional[datasets.download.download_manager.DownloadMode] = None ignore_verifications: bool = False try_from_hf_gcs: bool = True dl_manager: typing.Optional[datasets.download.download_manager.DownloadManager] = None base_path: typing.Optional[str] = None use_auth_token: typing.Union[bool, str, NoneType] = None **download_and_prepare_kwargs )
Parameters
- download_config (DownloadConfig, optional) — specific download configuration parameters.
-
download_mode (DownloadMode, optional) — select the download/generate mode - Default to
REUSE_DATASET_IF_EXISTS
-
ignore_verifications (
bool
) — Ignore the verifications of the downloaded/processed dataset information (checksums/size/splits/…) -
try_from_hf_gcs (
bool
) — If True, it will try to download the already prepared dataset from the Hf google cloud storage - dl_manager (DownloadManager, optional) — specific Download Manger to use
-
base_path (
str
, optional) — base path for relative paths that are used to download files. This can be a remote url. If not specified, the value of the base_path attribute (self.base_path) will be used instead. -
use_auth_token (
Union[str, bool]
, optional) — Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If True, will get token from ~/.huggingface. - **download_and_prepare_kwargs (additional keyword arguments) — Keyword arguments.
Downloads and prepares dataset for reading.
Empty dict if doesn’t exist
Example:
>>> from datasets import load_dataset_builder
>>> ds_builder = load_dataset_builder('rotten_tomatoes')
>>> ds_builder.get_all_exported_dataset_infos()
{'default': DatasetInfo(description="Movie Review Dataset.
a dataset of containing 5,331 positive and 5,331 negative processed
s from Rotten Tomatoes movie reviews. This data was first used in Bo
Lillian Lee, ``Seeing stars: Exploiting class relationships for
t categorization with respect to rating scales.'', Proceedings of the
5.
ion='@InProceedings{Pang+Lee:05a,
= {Bo Pang and Lillian Lee},
= {Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales},
tle = {Proceedings of the ACL},
2005
age='http://www.cs.cornell.edu/people/pabo/movie-review-data/', license='', features={'text': Value(dtype='string', id=None), 'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None)}, post_processed=None, supervised_keys=SupervisedKeysData(input='', output=''), task_templates=[TextClassification(task='text-classification', text_column='text', label_column='label')], builder_name='rotten_tomatoes_movie_review', config_name='default', version=1.0.0, splits={'train': SplitInfo(name='train', num_bytes=1074810, num_examples=8530, dataset_name='rotten_tomatoes_movie_review'), 'validation': SplitInfo(name='validation', num_bytes=134679, num_examples=1066, dataset_name='rotten_tomatoes_movie_review'), 'test': SplitInfo(name='test', num_bytes=135972, num_examples=1066, dataset_name='rotten_tomatoes_movie_review')}, download_checksums={'https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz': {'num_bytes': 487770, 'checksum': 'a05befe52aafda71d458d188a1c54506a998b1308613ba76bbda2e5029409ce9'}}, download_size=487770, post_processing_size=None, dataset_size=1345461, size_in_bytes=1833231)}
Empty DatasetInfo if doesn’t exist
Example:
>>> from datasets import load_dataset_builder
>>> ds_builder = load_dataset_builder('rotten_tomatoes')
>>> ds_builder.get_exported_dataset_info()
DatasetInfo(description="Movie Review Dataset.
a dataset of containing 5,331 positive and 5,331 negative processed
s from Rotten Tomatoes movie reviews. This data was first used in Bo
Lillian Lee, ``Seeing stars: Exploiting class relationships for
t categorization with respect to rating scales.'', Proceedings of the
5.
ion='@InProceedings{Pang+Lee:05a,
= {Bo Pang and Lillian Lee},
= {Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales},
tle = {Proceedings of the ACL},
2005
age='http://www.cs.cornell.edu/people/pabo/movie-review-data/', license='', features={'text': Value(dtype='string', id=None), 'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None)}, post_processed=None, supervised_keys=SupervisedKeysData(input='', output=''), task_templates=[TextClassification(task='text-classification', text_column='text', label_column='label')], builder_name='rotten_tomatoes_movie_review', config_name='default', version=1.0.0, splits={'train': SplitInfo(name='train', num_bytes=1074810, num_examples=8530, dataset_name='rotten_tomatoes_movie_review'), 'validation': SplitInfo(name='validation', num_bytes=134679, num_examples=1066, dataset_name='rotten_tomatoes_movie_review'), 'test': SplitInfo(name='test', num_bytes=135972, num_examples=1066, dataset_name='rotten_tomatoes_movie_review')}, download_checksums={'https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz': {'num_bytes': 487770, 'checksum': 'a05befe52aafda71d458d188a1c54506a998b1308613ba76bbda2e5029409ce9'}}, download_size=487770, post_processing_size=None, dataset_size=1345461, size_in_bytes=1833231)
Return the path of the module of this class or subclass.
Base class for datasets with data generation based on dict generators.
GeneratorBasedBuilder
is a convenience class that abstracts away much
of the data writing and reading of DatasetBuilder
. It expects subclasses to
implement generators of feature dictionaries across the dataset splits
(_split_generators
). See the method docstrings for details.
class datasets.BeamBasedBuilder
< source >( *args beam_runner = None beam_options = None **kwargs )
Beam based Builder.
class datasets.ArrowBasedBuilder
< source >( cache_dir: typing.Optional[str] = None config_name: typing.Optional[str] = None hash: typing.Optional[str] = None base_path: typing.Optional[str] = None info: typing.Optional[datasets.info.DatasetInfo] = None features: typing.Optional[datasets.features.features.Features] = None use_auth_token: typing.Union[bool, str, NoneType] = None repo_id: typing.Optional[str] = None data_files: typing.Union[str, list, dict, datasets.data_files.DataFilesDict, NoneType] = None data_dir: typing.Optional[str] = None name = 'deprecated' **config_kwargs )
Base class for datasets with data generation based on Arrow loading functions (CSV/JSON/Parquet).
class datasets.BuilderConfig
< source >( name: str = 'default' version: typing.Union[str, datasets.utils.version.Version, NoneType] = 0.0.0 data_dir: typing.Optional[str] = None data_files: typing.Optional[datasets.data_files.DataFilesDict] = None description: typing.Optional[str] = None )
Parameters
-
name (
str
, default"default"
) — -
version (Version or
str
, optional) — -
data_dir (
str
, optional) — -
data_files (
str
orSequence
orMapping
, optional) — Path(s) to source data file(s). -
description (
str
, optional) —
Base class for DatasetBuilder data configuration.
DatasetBuilder subclasses with data configuration options should subclass BuilderConfig and add their own properties.
create_config_id
< source >( config_kwargs: dict custom_features: typing.Optional[datasets.features.features.Features] = None )
The config id is used to build the cache directory. By default it is equal to the config name. However the name of a config is not sufficient to have a unique identifier for the dataset being generated since it doesn’t take into account:
- the config kwargs that can be used to overwrite attributes
- the custom features used to write the dataset
- the data_files for json/text/csv/pandas datasets Therefore the config id is just the config name with an optional suffix based on these.
Download
class datasets.DownloadManager
< source >( dataset_name: typing.Optional[str] = None data_dir: typing.Optional[str] = None download_config: typing.Optional[datasets.download.download_config.DownloadConfig] = None base_path: typing.Optional[str] = None record_checksums = True )
download
< source >( url_or_urls ) → downloaded_path(s)
Returns
downloaded_path(s)
str
, The downloaded paths matching the given input
url_or_urls.
Download given url(s).
download_and_extract
< source >( url_or_urls ) → extracted_path(s)
Returns
extracted_path(s)
str
, extracted paths of given URL(s).
Download and extract given url_or_urls.
download_custom
< source >( url_or_urls custom_download ) → downloaded_path(s)
Returns
downloaded_path(s)
str
, The downloaded paths matching the given input
url_or_urls.
Download given urls(s) by calling custom_download
.
extract
< source >( path_or_paths num_proc = None ) → extracted_path(s)
Returns
extracted_path(s)
str
, The extracted paths matching the given input
path_or_paths.
Extract given path(s).
iter_archive
< source >( path_or_buf: typing.Union[str, _io.BufferedReader] )
Iterate over files within an archive.
iter_files
< source >( paths: typing.Union[str, typing.List[str]] )
Iterate over file paths.
ship_files_with_pipeline
< source >( downloaded_path_or_paths pipeline )
Ship the files using Beam FileSystems to the pipeline temp dir.
class datasets.StreamingDownloadManager
< source >( dataset_name: typing.Optional[str] = None data_dir: typing.Optional[str] = None download_config: typing.Optional[datasets.download.download_config.DownloadConfig] = None base_path: typing.Optional[str] = None )
Download manager that uses the ”::” separator to navigate through (possibly remote) compressed archives.
Contrary to the regular DownloadManager, the download
and extract
methods don’t actually download nor extract
data, but they rather return the path or url that could be opened using the xopen
function which extends the
builtin open
function to stream data from remote files.
download
< source >( url_or_urls ) → downloaded_path(s)
Returns
downloaded_path(s)
str
, The downloaded paths matching the given input
url_or_urls.
Download given url(s).
download_and_extract
< source >( url_or_urls ) → extracted_path(s)
Returns
extracted_path(s)
str
, extracted paths of given URL(s).
Download and extract given url_or_urls.
extract
< source >( path_or_paths ) → extracted_path(s)
Returns
extracted_path(s)
str
, The extracted paths matching the given input
path_or_paths.
Extract given path(s).
iter_archive
< source >( urlpath_or_buf: typing.Union[str, _io.BufferedReader] )
Iterate over files within an archive.
iter_files
< source >( urlpaths: typing.Union[str, typing.List[str]] )
Iterate over files.
class datasets.DownloadConfig
< source >( cache_dir: typing.Union[str, pathlib.Path, NoneType] = None force_download: bool = False resume_download: bool = False local_files_only: bool = False proxies: typing.Optional[typing.Dict] = None user_agent: typing.Optional[str] = None extract_compressed_file: bool = False force_extract: bool = False delete_extracted: bool = False use_etag: bool = True num_proc: typing.Optional[int] = None max_retries: int = 1 use_auth_token: typing.Union[bool, str, NoneType] = None ignore_url_params: bool = False download_desc: typing.Optional[str] = None )
Parameters
-
cache_dir (
str
orPath
, optional) — Specify a cache directory to save the file to (overwrite the default cache dir). -
force_download (
bool
, defaultFalse
) — If True, re-dowload the file even if it’s already cached in the cache dir. -
resume_download (
bool
, defaultFalse
) — If True, resume the download if incompletly recieved file is found. -
proxies (
dict
, optional) — -
user_agent (
str
, optional) — Optional string or dict that will be appended to the user-agent on remote requests. -
extract_compressed_file (
bool
, defaultFalse
) — If True and the path point to a zip or tar file, extract the compressed file in a folder along the archive. -
force_extract (
bool
, defaultFalse
) — If True when extract_compressed_file is True and the archive was already extracted, re-extract the archive and override the folder where it was extracted. -
delete_extracted (
bool
, defaultFalse
) — Whether to delete (or keep) the extracted files. -
use_etag (
bool
, defaultTrue
) — Whether to use the ETag HTTP response header to validate the cached files. -
num_proc (
int
, optional) — The number of processes to launch to download the files in parallel. -
max_retries (
int
, default1
) — The number of times to retry an HTTP request if it fails. -
use_auth_token (
str
orbool
, optional) — Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If True, will get token from ~/.huggingface. -
ignore_url_params (
bool
, defaultFalse
) — Whether to strip all query parameters and #fragments from the download URL before using it for caching the file. -
download_desc (
str
, optional) — A description to be displayed alongside with the progress bar while downloading the files.
Configuration for our cached path manager.
class datasets.DownloadMode
< source >( value names = None module = None qualname = None type = None start = 1 )
Enum
for how to treat pre-existing downloads and data.
The default mode is REUSE_DATASET_IF_EXISTS
, which will reuse both
raw downloads and the prepared dataset if they exist.
The generations modes:
Downloads | Dataset | |
---|---|---|
REUSE_DATASET_IF_EXISTS (default) |
Reuse | Reuse |
REUSE_CACHE_IF_EXISTS |
Reuse | Fresh |
FORCE_REDOWNLOAD |
Fresh | Fresh |
Splits
class datasets.SplitGenerator
< source >( name: str gen_kwargs: typing.Dict = <factory> )
Defines the split information for the generator.
This should be used as returned value of
GeneratorBasedBuilder._split_generators()
.
See GeneratorBasedBuilder._split_generators()
for more info and example
of usage.
Enum
for dataset splits.
Datasets are typically split into different subsets to be used at various stages of training and evaluation.
TRAIN
: the training data.VALIDATION
: the validation data. If present, this is typically used as evaluation data while iterating on a model (e.g. changing hyperparameters, model architecture, etc.).TEST
: the testing data. This is the data to report metrics on. Typically you do not want to use this during model iteration as you may overfit to it.ALL
: the union of all defined dataset splits.
Note: All splits, including compositions inherit from datasets.SplitBase
See the :doc:guide on splits </loading>
for more information.
Example:
>>> datasets.SplitGenerator(
... name=datasets.Split.TRAIN,
... gen_kwargs={"split_key": "train", "files": dl_manager.download_and extract(url)},
... ),
... datasets.SplitGenerator(
... name=datasets.Split.VALIDATION,
... gen_kwargs={"split_key": "validation", "files": dl_manager.download_and extract(url)},
... ),
... datasets.SplitGenerator(
... name=datasets.Split.TEST,
... gen_kwargs={"split_key": "test", "files": dl_manager.download_and extract(url)},
... )
Descriptor corresponding to a named split (train, test, …).
Example:
Each descriptor can be composed with other using addition or slice. Ex
split = datasets.Split.TRAIN.subsplit(datasets.percent[0:25]) + datasets.Split.TEST
The resulting split will correspond to 25% of the train split merged with
100% of the test split.
Warning:
A split cannot be added twice, so the following will fail:
split = (
datasets.Split.TRAIN.subsplit(datasets.percent[:25]) +
datasets.Split.TRAIN.subsplit(datasets.percent[75:])
) # Error
split = datasets.Split.TEST + datasets.Split.ALL # Error
Warning:
Split corresponding to the union of all defined dataset splits.
class datasets.ReadInstruction
< source >( split_name rounding = None from_ = None to = None unit = None )
Reading instruction for a dataset.
Examples:
# The following lines are equivalent:
ds = datasets.load_dataset('mnist', split='test[:33%]')
ds = datasets.load_dataset('mnist', split=datasets.ReadInstruction.from_spec('test[:33%]'))
ds = datasets.load_dataset('mnist', split=datasets.ReadInstruction('test', to=33, unit='%'))
ds = datasets.load_dataset('mnist', split=datasets.ReadInstruction(
'test', from_=0, to=33, unit='%'))
# The following lines are equivalent:
ds = datasets.load_dataset('mnist', split='test[:33%]+train[1:-1]')
ds = datasets.load_dataset('mnist', split=datasets.ReadInstruction.from_spec(
'test[:33%]+train[1:-1]'))
ds = datasets.load_dataset('mnist', split=(
datasets.ReadInstruction('test', to=33, unit='%') +
datasets.ReadInstruction('train', from_=1, to=-1, unit='abs')))
# The following lines are equivalent:
ds = datasets.load_dataset('mnist', split='test[:33%](pct1_dropremainder)')
ds = datasets.load_dataset('mnist', split=datasets.ReadInstruction.from_spec(
'test[:33%](pct1_dropremainder)'))
ds = datasets.load_dataset('mnist', split=datasets.ReadInstruction(
'test', from_=0, to=33, unit='%', rounding="pct1_dropremainder"))
# 10-fold validation:
tests = datasets.load_dataset(
'mnist',
[datasets.ReadInstruction('train', from_=k, to=k+10, unit='%')
for k in range(0, 100, 10)])
trains = datasets.load_dataset(
'mnist',
[datasets.ReadInstruction('train', to=k, unit='%') + datasets.ReadInstruction('train', from_=k+10, unit='%')
for k in range(0, 100, 10)])
from_spec
< source >( spec )
Parameters
-
spec (str) — split(s) + optional slice(s) to read + optional rounding
if percents are used as the slicing unit. A slice can be specified,
using absolute numbers (int) or percentages (int). E.g.
test
: test split.test + validation
: test split + validation split.test[10:]
: test split, minus its first 10 records.test[:10%]
: first 10% records of test split.test[:20%](pct1_dropremainder)
: first 10% records, rounded with thepct1_dropremainder
rounding.test[:-5%]+train[40%:60%]
: first 95% of test + middle 20% of train.
Creates a ReadInstruction instance out of a string spec.
Translate instruction into a list of absolute instructions.
Those absolute instructions are then to be added together.
Version
class datasets.Version
< source >( version_str: str description: typing.Optional[str] = None major: typing.Union[str, int, NoneType] = None minor: typing.Union[str, int, NoneType] = None patch: typing.Union[str, int, NoneType] = None )
Dataset version MAJOR.MINOR.PATCH.
Returns True if other_version matches.