Datasets documentation

Load audio data

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v3.2.0).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Load audio data

You can load an audio dataset using the Audio feature that automatically decodes and resamples the audio files when you access the examples. Audio decoding is based on the soundfile python package, which uses the libsndfile C library under the hood.

Installation

To work with audio datasets, you need to have the audio dependencies installed. Check out the installation guide to learn how to install it.

Local files

You can load your own dataset using the paths to your audio files. Use the cast_column() function to take a column of audio file paths, and cast it to the Audio feature:

>>> audio_dataset = Dataset.from_dict({"audio": ["path/to/audio_1", "path/to/audio_2", ..., "path/to/audio_n"]}).cast_column("audio", Audio())
>>> audio_dataset[0]["audio"]
{'array': array([ 0.        ,  0.00024414, -0.00024414, ..., -0.00024414,
         0.        ,  0.        ], dtype=float32),
 'path': 'path/to/audio_1',
 'sampling_rate': 16000}

AudioFolder

You can also load a dataset with an AudioFolder dataset builder. It does not require writing a custom dataloader, making it useful for quickly creating and loading audio datasets with several thousand audio files.

AudioFolder with metadata

To link your audio files with metadata information, make sure your dataset has a metadata.csv file. Your dataset structure might look like:

folder/train/metadata.csv
folder/train/first_audio_file.mp3
folder/train/second_audio_file.mp3
folder/train/third_audio_file.mp3

Your metadata.csv file must have a file_name column which links audio files with their metadata. An example metadata.csv file might look like:

file_name,transcription
first_audio_file.mp3,znowu się duch z ciałem zrośnie w młodocianej wstaniesz wiosnie i możesz skutkiem tych leków umierać wstawać wiek wieków dalej tam były przestrogi jak siekać głowę jak nogi
second_audio_file.mp3,już u źwierzyńca podwojów król zasiada przy nim książęta i panowie rada a gdzie wzniosły krążył ganek rycerze obok kochanek król skinął palcem zaczęto igrzysko
third_audio_file.mp3,pewnie kędyś w obłędzie ubite minęły szlaki zaczekajmy dzień jaki poślemy szukać wszędzie dziś jutro pewnie będzie posłali wszędzie sługi czekali dzień i drugi gdy nic nie doczekali z płaczem chcą jechać dali

AudioFolder will load audio data and create a transcription column containing texts from metadata.csv:

>>> from datasets import load_dataset

>>> dataset = load_dataset("audiofolder", data_dir="/path/to/folder")
>>> # OR by specifying the list of files
>>> dataset = load_dataset("audiofolder", data_files=["path/to/audio_1", "path/to/audio_2", ..., "path/to/audio_n"])

You can load remote datasets from their URLs with the data_files parameter:

>>> dataset = load_dataset("audiofolder", data_files=["https://foo.bar/audio_1", "https://foo.bar/audio_2", ..., "https://foo.bar/audio_n"]
>>> # for example, pass SpeechCommands archive:
>>> dataset = load_dataset("audiofolder", data_files="https://s3.amazonaws.com/datasets.huggingface.co/SpeechCommands/v0.01/v0.01_test.tar.gz")

Metadata can also be specified as JSON Lines, in which case use metadata.jsonl as the name of the metadata file. This format is helpful in scenarios when one of the columns is complex, e.g. a list of floats, to avoid parsing errors or reading the complex values as strings.

To ignore the information in the metadata file, set drop_metadata=True in load_dataset():

>>> from datasets import load_dataset

>>> dataset = load_dataset("audiofolder", data_dir="/path/to/folder", drop_metadata=True)

If you don’t have a metadata file, AudioFolder automatically infers the label name from the directory name. If you want to drop automatically created labels, set drop_labels=True. In this case, your dataset will only contain an audio column:

>>> from datasets import load_dataset

>>> dataset = load_dataset("audiofolder", data_dir="/path/to/folder_without_metadata", drop_labels=True)

For more information about creating your own AudioFolder dataset, take a look at the Create an audio dataset guide.

For a guide on how to load any type of dataset, take a look at the general loading guide.

< > Update on GitHub