AutoTrain documentation

Seq2Seq Parameters

You are viewing v0.8.21 version. A newer version v0.8.24 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Seq2Seq Parameters

class autotrain.trainers.seq2seq.params.Seq2SeqParams

< >

( data_path: str = None model: str = 'google/flan-t5-base' username: Optional = None seed: int = 42 train_split: str = 'train' valid_split: Optional = None project_name: str = 'project-name' token: Optional = None push_to_hub: bool = False text_column: str = 'text' target_column: str = 'target' lr: float = 5e-05 epochs: int = 3 max_seq_length: int = 128 max_target_length: int = 128 batch_size: int = 2 warmup_ratio: float = 0.1 gradient_accumulation: int = 1 optimizer: str = 'adamw_torch' scheduler: str = 'linear' weight_decay: float = 0.0 max_grad_norm: float = 1.0 logging_steps: int = -1 eval_strategy: str = 'epoch' auto_find_batch_size: bool = False mixed_precision: Optional = None save_total_limit: int = 1 peft: bool = False quantization: Optional = 'int8' lora_r: int = 16 lora_alpha: int = 32 lora_dropout: float = 0.05 target_modules: str = 'all-linear' log: str = 'none' early_stopping_patience: int = 5 early_stopping_threshold: float = 0.01 )

Parameters

  • data_path (str) — Path to the dataset.
  • model (str) — Name of the model to be used. Default is “google/flan-t5-base”.
  • username (Optional[str]) — Hugging Face Username.
  • seed (int) — Random seed for reproducibility. Default is 42.
  • train_split (str) — Name of the training data split. Default is “train”.
  • valid_split (Optional[str]) — Name of the validation data split.
  • project_name (str) — Name of the project or output directory. Default is “project-name”.
  • token (Optional[str]) — Hub Token for authentication.
  • push_to_hub (bool) — Whether to push the model to the Hugging Face Hub. Default is False.
  • text_column (str) — Name of the text column in the dataset. Default is “text”.
  • target_column (str) — Name of the target text column in the dataset. Default is “target”.
  • lr (float) — Learning rate for training. Default is 5e-5.
  • epochs (int) — Number of training epochs. Default is 3.
  • max_seq_length (int) — Maximum sequence length for input text. Default is 128.
  • max_target_length (int) — Maximum sequence length for target text. Default is 128.
  • batch_size (int) — Training batch size. Default is 2.
  • warmup_ratio (float) — Proportion of warmup steps. Default is 0.1.
  • gradient_accumulation (int) — Number of gradient accumulation steps. Default is 1.
  • optimizer (str) — Optimizer to be used. Default is “adamw_torch”.
  • scheduler (str) — Learning rate scheduler to be used. Default is “linear”.
  • weight_decay (float) — Weight decay for the optimizer. Default is 0.0.
  • max_grad_norm (float) — Maximum gradient norm for clipping. Default is 1.0.
  • logging_steps (int) — Number of steps between logging. Default is -1 (disabled).
  • eval_strategy (str) — Evaluation strategy. Default is “epoch”.
  • auto_find_batch_size (bool) — Whether to automatically find the batch size. Default is False.
  • mixed_precision (Optional[str]) — Mixed precision training mode (fp16, bf16, or None).
  • save_total_limit (int) — Maximum number of checkpoints to save. Default is 1.
  • peft (bool) — Whether to use Parameter-Efficient Fine-Tuning (PEFT). Default is False.
  • quantization (Optional[str]) — Quantization mode (int4, int8, or None). Default is “int8”.
  • lora_r (int) — LoRA-R parameter for PEFT. Default is 16.
  • lora_alpha (int) — LoRA-Alpha parameter for PEFT. Default is 32.
  • lora_dropout (float) — LoRA-Dropout parameter for PEFT. Default is 0.05.
  • target_modules (str) — Target modules for PEFT. Default is “all-linear”.
  • log (str) — Logging method for experiment tracking. Default is “none”.
  • early_stopping_patience (int) — Patience for early stopping. Default is 5.
  • early_stopping_threshold (float) — Threshold for early stopping. Default is 0.01.

Seq2SeqParams is a configuration class for sequence-to-sequence training parameters.

< > Update on GitHub