AutoTrain documentation
LLM Finetuning
LLM Finetuning
With AutoTrain, you can easily finetune large language models (LLMs) on your own data!
AutoTrain supports the following types of LLM finetuning:
- Causal Language Modeling (CLM)
- Masked Language Modeling (MLM) [Coming Soon]
Data Preparation
LLM finetuning accepts data in CSV format.
Data Format For SFT / Generic Trainer
For SFT / Generic Trainer, the data should be in the following format:
text |
---|
human: hello \n bot: hi nice to meet you |
human: how are you \n bot: I am fine |
human: What is your name? \n bot: My name is Mary |
human: Which is the best programming language? \n bot: Python |
An example dataset for this format can be found here: https://huggingface.co/datasets/timdettmers/openassistant-guanaco
For SFT/Generic training, your dataset must have a text
column
Data Format For Reward Trainer
For Reward Trainer, the data should be in the following format:
text | rejected_text |
---|---|
human: hello \n bot: hi nice to meet you | human: hello \n bot: leave me alone |
human: how are you \n bot: I am fine | human: how are you \n bot: I am not fine |
human: What is your name? \n bot: My name is Mary | human: What is your name? \n bot: Whats it to you? |
human: Which is the best programming language? \n bot: Python | human: Which is the best programming language? \n bot: Javascript |
For Reward Trainer, your dataset must have a text
column (aka chosen text) and a rejected_text
column.
Data Format For DPO Trainer
For DPO Trainer, the data should be in the following format:
prompt | text | rejected_text |
---|---|---|
hello | hi nice to meet you | leave me alone |
how are you | I am fine | I am not fine |
What is your name? | My name is Mary | Whats it to you? |
What is your name? | My name is Mary | I dont have a name |
Which is the best programming language? | Python | Javascript |
Which is the best programming language? | Python | C++ |
Which is the best programming language? | Java | C++ |
For DPO Trainer, your dataset must have a prompt
column, a text
column (aka chosen text) and a rejected_text
column.
For all tasks, you can use both CSV and JSONL files!
Parameters
❯ autotrain llm --help
usage: autotrain <command> [<args>] llm [-h] [--train] [--deploy] [--inference] [--username USERNAME]
[--backend {local-cli,spaces-a10gl,spaces-a10gs,spaces-a100,spaces-t4m,spaces-t4s,spaces-cpu,spaces-cpuf}]
[--token TOKEN] [--push-to-hub] --model MODEL --project-name PROJECT_NAME [--data-path DATA_PATH]
[--train-split TRAIN_SPLIT] [--valid-split VALID_SPLIT] [--batch-size BATCH_SIZE] [--seed SEED]
[--epochs EPOCHS] [--gradient_accumulation GRADIENT_ACCUMULATION] [--disable_gradient_checkpointing]
[--lr LR] [--log {none,wandb,tensorboard}] [--text_column TEXT_COLUMN]
[--rejected_text_column REJECTED_TEXT_COLUMN] [--prompt-text-column PROMPT_TEXT_COLUMN]
[--model-ref MODEL_REF] [--warmup_ratio WARMUP_RATIO] [--optimizer OPTIMIZER] [--scheduler SCHEDULER]
[--weight_decay WEIGHT_DECAY] [--max_grad_norm MAX_GRAD_NORM] [--add_eos_token] [--block_size BLOCK_SIZE]
[--peft] [--lora_r LORA_R] [--lora_alpha LORA_ALPHA] [--lora_dropout LORA_DROPOUT]
[--logging_steps LOGGING_STEPS] [--evaluation_strategy {epoch,steps,no}]
[--save_total_limit SAVE_TOTAL_LIMIT] [--save_strategy {epoch,steps}] [--auto_find_batch_size]
[--mixed_precision {fp16,bf16,None}] [--quantization {int4,int8,None}] [--model_max_length MODEL_MAX_LENGTH]
[--max_prompt_length MAX_PROMPT_LENGTH] [--max_completion_length MAX_COMPLETION_LENGTH]
[--trainer {default,dpo,sft,orpo,reward}] [--target_modules TARGET_MODULES] [--merge_adapter]
[--use_flash_attention_2] [--dpo-beta DPO_BETA] [--chat_template {tokenizer,chatml,zephyr,None}]
[--padding {left,right,None}]
✨ Run AutoTrain LLM
options:
-h, --help show this help message and exit
--train Command to train the model
--deploy Command to deploy the model (limited availability)
--inference Command to run inference (limited availability)
--username USERNAME Hugging Face Hub Username
--backend {local-cli,spaces-a10gl,spaces-a10gs,spaces-a100,spaces-t4m,spaces-t4s,spaces-cpu,spaces-cpuf}
Backend to use: default or spaces. Spaces backend requires push_to_hub & username. Advanced users only.
--token TOKEN Your Hugging Face API token. Token must have write access to the model hub.
--push-to-hub Push to hub after training will push the trained model to the Hugging Face model hub.
--model MODEL Base model to use for training
--project-name PROJECT_NAME
Output directory / repo id for trained model (must be unique on hub)
--data-path DATA_PATH
Train dataset to use. When using cli, this should be a directory path containing training and validation data in appropriate
formats
--train-split TRAIN_SPLIT
Train dataset split to use
--valid-split VALID_SPLIT
Validation dataset split to use
--batch-size BATCH_SIZE, --train-batch-size BATCH_SIZE
Training batch size to use
--seed SEED Random seed for reproducibility
--epochs EPOCHS Number of training epochs
--gradient_accumulation GRADIENT_ACCUMULATION, --gradient-accumulation GRADIENT_ACCUMULATION
Gradient accumulation steps
--disable_gradient_checkpointing, --disable-gradient-checkpointing, --disable-gc
Disable gradient checkpointing
--lr LR Learning rate
--log {none,wandb,tensorboard}
Use experiment tracking
--text_column TEXT_COLUMN, --text-column TEXT_COLUMN
Specify the dataset column to use for text data. This parameter is essential for models processing textual information.
Default is 'text'.
--rejected_text_column REJECTED_TEXT_COLUMN, --rejected-text-column REJECTED_TEXT_COLUMN
Define the column to use for storing rejected text entries, which are typically entries that do not meet certain criteria
for processing. Default is 'rejected'. Used only for orpo, dpo and reward trainerss
--prompt-text-column PROMPT_TEXT_COLUMN, --prompt-text-column PROMPT_TEXT_COLUMN
Identify the column that contains prompt text for tasks requiring contextual inputs, such as conversation or completion
generation. Default is 'prompt'. Used only for dpo trainer
--model-ref MODEL_REF
Reference model to use for DPO when not using PEFT
--warmup_ratio WARMUP_RATIO, --warmup-ratio WARMUP_RATIO
Set the proportion of training allocated to warming up the learning rate, which can enhance model stability and performance
at the start of training. Default is 0.1
--optimizer OPTIMIZER
Choose the optimizer algorithm for training the model. Different optimizers can affect the training speed and model
performance. 'adamw_torch' is used by default.
--scheduler SCHEDULER
Select the learning rate scheduler to adjust the learning rate based on the number of epochs. 'linear' decreases the
learning rate linearly from the initial lr set. Default is 'linear'. Try 'cosine' for a cosine annealing schedule.
--weight_decay WEIGHT_DECAY, --weight-decay WEIGHT_DECAY
Define the weight decay rate for regularization, which helps prevent overfitting by penalizing larger weights. Default is
0.0
--max_grad_norm MAX_GRAD_NORM, --max-grad-norm MAX_GRAD_NORM
Set the maximum norm for gradient clipping, which is critical for preventing gradients from exploding during
backpropagation. Default is 1.0.
--add_eos_token, --add-eos-token
Toggle whether to automatically add an End Of Sentence (EOS) token at the end of texts, which can be critical for certain
types of models like language models. Only used for `default` trainer
--block_size BLOCK_SIZE, --block-size BLOCK_SIZE
Specify the block size for processing sequences. This is maximum sequence length or length of one block of text. Setting to
-1 determines block size automatically. Default is -1.
--peft, --use-peft Enable LoRA-PEFT
--lora_r LORA_R, --lora-r LORA_R
Set the 'r' parameter for Low-Rank Adaptation (LoRA). Default is 16.
--lora_alpha LORA_ALPHA, --lora-alpha LORA_ALPHA
Specify the 'alpha' parameter for LoRA. Default is 32.
--lora_dropout LORA_DROPOUT, --lora-dropout LORA_DROPOUT
Set the dropout rate within the LoRA layers to help prevent overfitting during adaptation. Default is 0.05.
--logging_steps LOGGING_STEPS, --logging-steps LOGGING_STEPS
Determine how often to log training progress in terms of steps. Setting it to '-1' determines logging steps automatically.
--evaluation_strategy {epoch,steps,no}, --evaluation-strategy {epoch,steps,no}
Choose how frequently to evaluate the model's performance, with 'epoch' as the default, meaning at the end of each training
epoch
--save_total_limit SAVE_TOTAL_LIMIT, --save-total-limit SAVE_TOTAL_LIMIT
Limit the total number of saved model checkpoints to manage disk usage effectively. Default is to save only the latest
checkpoint
--save_strategy {epoch,steps}, --save-strategy {epoch,steps}
Define the checkpoint saving strategy, with 'epoch' as the default, saving checkpoints at the end of each training epoch.
--auto_find_batch_size, --auto-find-batch-size
Automatically determine the optimal batch size based on system capabilities to maximize efficiency.
--mixed_precision {fp16,bf16,None}, --mixed-precision {fp16,bf16,None}
Choose the precision mode for training to optimize performance and memory usage. Options are 'fp16', 'bf16', or None for
default precision. Default is None.
--quantization {int4,int8,None}, --quantization {int4,int8,None}
Choose the quantization level to reduce model size and potentially increase inference speed. Options include 'int4', 'int8',
or None. Enabling requires --peft
--model_max_length MODEL_MAX_LENGTH, --model-max-length MODEL_MAX_LENGTH
Set the maximum length for the model to process in a single batch, which can affect both performance and memory usage.
Default is 1024
--max_prompt_length MAX_PROMPT_LENGTH, --max-prompt-length MAX_PROMPT_LENGTH
Specify the maximum length for prompts used in training, particularly relevant for tasks requiring initial contextual input.
Used only for `orpo` trainer.
--max_completion_length MAX_COMPLETION_LENGTH, --max-completion-length MAX_COMPLETION_LENGTH
Completion length to use, for orpo: encoder-decoder models only
--trainer {default,dpo,sft,orpo,reward}
Trainer type to use
--target_modules TARGET_MODULES, --target-modules TARGET_MODULES
Identify specific modules within the model architecture to target with adaptations or optimizations, such as LoRA. Comma
separated list of module names. Default is 'all-linear'.
--merge_adapter, --merge-adapter
Use this flag to merge PEFT adapter with the model
--use_flash_attention_2, --use-flash-attention-2, --use-fa2
Use flash attention 2
--dpo-beta DPO_BETA, --dpo-beta DPO_BETA
Beta for DPO trainer
--chat_template {tokenizer,chatml,zephyr,None}, --chat-template {tokenizer,chatml,zephyr,None}
Apply a specific template for chat-based interactions, with options including 'tokenizer', 'chatml', 'zephyr', or None. This
setting can shape the model's conversational behavior.
--padding {left,right,None}, --padding {left,right,None}
Specify the padding direction for sequences, critical for models sensitive to input alignment. Options include 'left',
'right', or None