AutoTrain documentation

DreamBooth

You are viewing v0.7.69 version. A newer version v0.8.24 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

DreamBooth

DreamBooth is a method to personalize text-to-image models like Stable Diffusion given just a few (3-5) images of a subject. It allows the model to generate contextualized images of the subject in different scenes, poses, and views.

Data Preparation

The data format for DreamBooth training is simple. All you need is images of a concept (e.g. a person) and a concept token.

To train a dreambooth model, please select an appropriate model from the hub. When choosing a model from the hub, please make sure you select the correct image size compatible with the model.

Your concept token is prompt in parameters section.

Parameters

❯ autotrain dreambooth --help
usage: autotrain <command> [<args>] dreambooth [-h] [--train] [--deploy] [--inference] [--username USERNAME]
                                               [--backend {local-cli,spaces-a10gl,spaces-a10gs,spaces-a100,spaces-t4m,spaces-t4s,spaces-cpu,spaces-cpuf}]
                                               [--token TOKEN] [--push-to-hub] --model MODEL --project-name PROJECT_NAME [--data-path DATA_PATH]
                                               [--train-split TRAIN_SPLIT] [--valid-split VALID_SPLIT] [--batch-size BATCH_SIZE] [--seed SEED]
                                               [--epochs EPOCHS] [--gradient_accumulation GRADIENT_ACCUMULATION] [--disable_gradient_checkpointing]
                                               [--lr LR] [--log {none,wandb,tensorboard}] [--revision REVISION] [--tokenizer TOKENIZER] --image-path
                                               IMAGE_PATH [--class-image-path CLASS_IMAGE_PATH] --prompt PROMPT [--class-prompt CLASS_PROMPT]
                                               [--num-class-images NUM_CLASS_IMAGES] [--class-labels-conditioning CLASS_LABELS_CONDITIONING]
                                               [--prior-preservation] [--prior-loss-weight PRIOR_LOSS_WEIGHT] --resolution RESOLUTION
                                               [--center-crop] [--train-text-encoder] [--sample-batch-size SAMPLE_BATCH_SIZE]
                                               [--num-steps NUM_STEPS] [--checkpointing-steps CHECKPOINTING_STEPS]
                                               [--resume-from-checkpoint RESUME_FROM_CHECKPOINT] [--scale-lr] [--scheduler SCHEDULER]
                                               [--warmup-steps WARMUP_STEPS] [--num-cycles NUM_CYCLES] [--lr-power LR_POWER]
                                               [--dataloader-num-workers DATALOADER_NUM_WORKERS] [--use-8bit-adam] [--adam-beta1 ADAM_BETA1]
                                               [--adam-beta2 ADAM_BETA2] [--adam-weight-decay ADAM_WEIGHT_DECAY] [--adam-epsilon ADAM_EPSILON]
                                               [--max-grad-norm MAX_GRAD_NORM] [--allow-tf32]
                                               [--prior-generation-precision PRIOR_GENERATION_PRECISION] [--local-rank LOCAL_RANK] [--xformers]
                                               [--pre-compute-text-embeddings] [--tokenizer-max-length TOKENIZER_MAX_LENGTH]
                                               [--text-encoder-use-attention-mask] [--rank RANK] [--xl] [--mixed-precision MIXED_PRECISION]
                                               [--validation-prompt VALIDATION_PROMPT] [--num-validation-images NUM_VALIDATION_IMAGES]
                                               [--validation-epochs VALIDATION_EPOCHS] [--checkpoints-total-limit CHECKPOINTS_TOTAL_LIMIT]
                                               [--validation-images VALIDATION_IMAGES] [--logging]

✨ Run AutoTrain DreamBooth Training

options:
  -h, --help            show this help message and exit
  --train               Command to train the model
  --deploy              Command to deploy the model (limited availability)
  --inference           Command to run inference (limited availability)
  --username USERNAME   Hugging Face Hub Username
  --backend {local-cli,spaces-a10gl,spaces-a10gs,spaces-a100,spaces-t4m,spaces-t4s,spaces-cpu,spaces-cpuf}
                        Backend to use: default or spaces. Spaces backend requires push_to_hub & username. Advanced users only.
  --token TOKEN         Your Hugging Face API token. Token must have write access to the model hub.
  --push-to-hub         Push to hub after training will push the trained model to the Hugging Face model hub.
  --model MODEL         Base model to use for training
  --project-name PROJECT_NAME
                        Output directory / repo id for trained model (must be unique on hub)
  --data-path DATA_PATH
                        Train dataset to use. When using cli, this should be a directory path containing training and validation data in appropriate
                        formats
  --train-split TRAIN_SPLIT
                        Train dataset split to use
  --valid-split VALID_SPLIT
                        Validation dataset split to use
  --batch-size BATCH_SIZE
                        Training batch size to use
  --seed SEED           Random seed for reproducibility
  --epochs EPOCHS       Number of training epochs
  --gradient_accumulation GRADIENT_ACCUMULATION
                        Gradient accumulation steps
  --disable_gradient_checkpointing
                        Disable gradient checkpointing
  --lr LR               Learning rate
  --log {none,wandb,tensorboard}
                        Use experiment tracking
  --revision REVISION   Model revision to use for training
  --tokenizer TOKENIZER
                        Tokenizer to use for training
  --image-path IMAGE_PATH
                        Path to the images
  --class-image-path CLASS_IMAGE_PATH
                        Path to the class images
  --prompt PROMPT       Instance prompt
  --class-prompt CLASS_PROMPT
                        Class prompt
  --num-class-images NUM_CLASS_IMAGES
                        Number of class images
  --class-labels-conditioning CLASS_LABELS_CONDITIONING
                        Class labels conditioning
  --prior-preservation  With prior preservation
  --prior-loss-weight PRIOR_LOSS_WEIGHT
                        Prior loss weight
  --resolution RESOLUTION
                        Resolution
  --center-crop         Center crop
  --train-text-encoder  Train text encoder
  --sample-batch-size SAMPLE_BATCH_SIZE
                        Sample batch size
  --num-steps NUM_STEPS
                        Max train steps
  --checkpointing-steps CHECKPOINTING_STEPS
                        Checkpointing steps
  --resume-from-checkpoint RESUME_FROM_CHECKPOINT
                        Resume from checkpoint
  --scale-lr            Scale learning rate
  --scheduler SCHEDULER
                        Learning rate scheduler
  --warmup-steps WARMUP_STEPS
                        Learning rate warmup steps
  --num-cycles NUM_CYCLES
                        Learning rate num cycles
  --lr-power LR_POWER   Learning rate power
  --dataloader-num-workers DATALOADER_NUM_WORKERS
                        Dataloader num workers
  --use-8bit-adam       Use 8bit adam
  --adam-beta1 ADAM_BETA1
                        Adam beta 1
  --adam-beta2 ADAM_BETA2
                        Adam beta 2
  --adam-weight-decay ADAM_WEIGHT_DECAY
                        Adam weight decay
  --adam-epsilon ADAM_EPSILON
                        Adam epsilon
  --max-grad-norm MAX_GRAD_NORM
                        Max grad norm
  --allow-tf32          Allow TF32
  --prior-generation-precision PRIOR_GENERATION_PRECISION
                        Prior generation precision
  --local-rank LOCAL_RANK
                        Local rank
  --xformers            Enable xformers memory efficient attention
  --pre-compute-text-embeddings
                        Pre compute text embeddings
  --tokenizer-max-length TOKENIZER_MAX_LENGTH
                        Tokenizer max length
  --text-encoder-use-attention-mask
                        Text encoder use attention mask
  --rank RANK           Rank
  --xl                  XL
  --mixed-precision MIXED_PRECISION
                        mixed precision, fp16, bf16, none
  --validation-prompt VALIDATION_PROMPT
                        Validation prompt
  --num-validation-images NUM_VALIDATION_IMAGES
                        Number of validation images
  --validation-epochs VALIDATION_EPOCHS
                        Validation epochs
  --checkpoints-total-limit CHECKPOINTS_TOTAL_LIMIT
                        Checkpoints total limit
  --validation-images VALIDATION_IMAGES
                        Validation images
  --logging             Logging using tensorboard
< > Update on GitHub