AutoTrain documentation
Image Classification
Image Classification
Image classification is a supervised learning problem: define a set of target classes (objects to identify in images), and train a model to recognize them using labeled example photos. Using AutoTrain, its super-easy to train a state-of-the-art image classification model. Just upload a set of images, and AutoTrain will automatically train a model to classify them.
Data Preparation
The data for image classification must be in zip format, with each class in a separate subfolder. For example, if you want to classify cats and dogs, your zip file should look like this:
cats_and_dogs.zip
βββ cats
β βββ cat.1.jpg
β βββ cat.2.jpg
β βββ cat.3.jpg
β βββ ...
βββ dogs
βββ dog.1.jpg
βββ dog.2.jpg
βββ dog.3.jpg
βββ ...
Some points to keep in mind:
- The zip file should contain multiple folders (the classes), each folder should contain images of a single class.
- The name of the folder should be the name of the class.
- The images must be jpeg, jpg or png.
- There should be at least 5 images per class.
- There should not be any other files in the zip file.
- There should not be any other folders inside the zip folder.
When train.zip is decompressed, it creates two folders: cats and dogs. these are the two categories for classification. The images for both categories are in their respective folders. You can have as many categories as you want.