AutoTrain documentation

Extractive Question Answering Parameters

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v0.8.24).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Extractive Question Answering Parameters

class autotrain.trainers.extractive_question_answering.params.ExtractiveQuestionAnsweringParams

< >

( data_path: str = None model: str = 'bert-base-uncased' lr: float = 5e-05 epochs: int = 3 max_seq_length: int = 128 max_doc_stride: int = 128 batch_size: int = 8 warmup_ratio: float = 0.1 gradient_accumulation: int = 1 optimizer: str = 'adamw_torch' scheduler: str = 'linear' weight_decay: float = 0.0 max_grad_norm: float = 1.0 seed: int = 42 train_split: str = 'train' valid_split: Optional = None text_column: str = 'context' question_column: str = 'question' answer_column: str = 'answers' logging_steps: int = -1 project_name: str = 'project-name' auto_find_batch_size: bool = False mixed_precision: Optional = None save_total_limit: int = 1 token: Optional = None push_to_hub: bool = False eval_strategy: str = 'epoch' username: Optional = None log: str = 'none' early_stopping_patience: int = 5 early_stopping_threshold: float = 0.01 )

Parameters

  • data_path (str) — Path to the dataset.
  • model (str) — Pre-trained model name. Default is “bert-base-uncased”.
  • lr (float) — Learning rate for the optimizer. Default is 5e-5.
  • epochs (int) — Number of training epochs. Default is 3.
  • max_seq_length (int) — Maximum sequence length for inputs. Default is 128.
  • max_doc_stride (int) — Maximum document stride for splitting context. Default is 128.
  • batch_size (int) — Batch size for training. Default is 8.
  • warmup_ratio (float) — Warmup proportion for learning rate scheduler. Default is 0.1.
  • gradient_accumulation (int) — Number of gradient accumulation steps. Default is 1.
  • optimizer (str) — Optimizer type. Default is “adamw_torch”.
  • scheduler (str) — Learning rate scheduler type. Default is “linear”.
  • weight_decay (float) — Weight decay for the optimizer. Default is 0.0.
  • max_grad_norm (float) — Maximum gradient norm for clipping. Default is 1.0.
  • seed (int) — Random seed for reproducibility. Default is 42.
  • train_split (str) — Name of the training data split. Default is “train”.
  • valid_split (Optional[str]) — Name of the validation data split. Default is None.
  • text_column (str) — Column name for context/text. Default is “context”.
  • question_column (str) — Column name for questions. Default is “question”.
  • answer_column (str) — Column name for answers. Default is “answers”.
  • logging_steps (int) — Number of steps between logging. Default is -1.
  • project_name (str) — Name of the project for output directory. Default is “project-name”.
  • auto_find_batch_size (bool) — Automatically find optimal batch size. Default is False.
  • mixed_precision (Optional[str]) — Mixed precision training mode (fp16, bf16, or None). Default is None.
  • save_total_limit (int) — Maximum number of checkpoints to save. Default is 1.
  • token (Optional[str]) — Authentication token for Hugging Face Hub. Default is None.
  • push_to_hub (bool) — Whether to push the model to Hugging Face Hub. Default is False.
  • eval_strategy (str) — Evaluation strategy during training. Default is “epoch”.
  • username (Optional[str]) — Hugging Face username for authentication. Default is None.
  • log (str) — Logging method for experiment tracking. Default is “none”.
  • early_stopping_patience (int) — Number of epochs with no improvement for early stopping. Default is 5.
  • early_stopping_threshold (float) — Threshold for early stopping improvement. Default is 0.01.

ExtractiveQuestionAnsweringParams

< > Update on GitHub