Profiler
Profiler is a tool that allows the collection of performance metrics during training and inference. Profiler’s context manager API can be used to better understand what model operators are the most expensive, examine their input shapes and stack traces, study device kernel activity, and visualize the execution trace. It provides insights into the performance of your model, allowing you to optimize and improve it.
This guide explains how to use PyTorch Profiler to measure the time and memory consumption of the model’s operators and how to integrate this with 🤗 Accelerate. We will cover various use cases and provide examples for each.
Using profiler to analyze execution time
Profiler allows one to check which operators were called during the execution of a code range wrapped with a profiler context manager.
Let’s see how we can use profiler to analyze the execution time:
import torch
import torchvision.models as models
from torch.profiler import profile, record_function, ProfilerActivity
model = models.resnet18()
inputs = torch.randn(5, 3, 224, 224)
with profile(activities=[ProfilerActivity.CPU], record_shapes=True) as prof:
model(inputs)
print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10))
The resulting table output (omitting some columns):
--------------------------------- ------------ ------------ ------------ ------------
Name Self CPU CPU total CPU time avg # of Calls
--------------------------------- ------------ ------------ ------------ ------------
aten::conv2d 171.000us 52.260ms 2.613ms 20
aten::convolution 227.000us 52.089ms 2.604ms 20
aten::_convolution 270.000us 51.862ms 2.593ms 20
aten::mkldnn_convolution 51.273ms 51.592ms 2.580ms 20
aten::batch_norm 118.000us 7.059ms 352.950us 20
aten::_batch_norm_impl_index 315.000us 6.941ms 347.050us 20
aten::native_batch_norm 6.305ms 6.599ms 329.950us 20
aten::max_pool2d 40.000us 4.008ms 4.008ms 1
aten::max_pool2d_with_indices 3.968ms 3.968ms 3.968ms 1
aten::add_ 780.000us 780.000us 27.857us 28
--------------------------------- ------------ ------------ ------------ ------------
Self CPU time total: 67.016ms
To get a finer granularity of results and include operator input shapes, pass group_by_input_shape=True
(note: this requires running the profiler with record_shapes=True
):
print(prof.key_averages(group_by_input_shape=True).table(sort_by="cpu_time_total", row_limit=10))
Using profiler to analyze memory consumption
Profiler can also show the amount of memory (used by the model’s tensors) that was allocated (or released) during the execution of the model’s operators. To enable memory profiling functionality pass profile_memory=True
.
model = models.resnet18()
inputs = torch.randn(5, 3, 224, 224)
with profile(activities=[ProfilerActivity.CPU],
profile_memory=True, record_shapes=True) as prof:
model(inputs)
print(prof.key_averages().table(sort_by="self_cpu_memory_usage", row_limit=10))
The resulting table output (omitting some columns):
--------------------------------- ------------ ------------ ------------
Name CPU Mem Self CPU Mem # of Calls
--------------------------------- ------------ ------------ ------------
aten::empty 94.85 Mb 94.85 Mb 205
aten::max_pool2d_with_indices 11.48 Mb 11.48 Mb 1
aten::addmm 19.53 Kb 19.53 Kb 1
aten::mean 10.00 Kb 10.00 Kb 1
aten::empty_strided 492 b 492 b 5
aten::cat 240 b 240 b 6
aten::abs 480 b 240 b 4
aten::masked_select 120 b 112 b 1
aten::ne 61 b 53 b 3
aten::eq 30 b 30 b 1
--------------------------------- ------------ ------------ ------------
Self CPU time total: 69.332ms
Exporting chrome trace
You can examine the sequence of profiled operators and CUDA kernels in Chrome trace viewer (chrome://tracing
):
model = models.resnet18().cuda()
inputs = torch.randn(5, 3, 224, 224).cuda()
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof:
model(inputs)
prof.export_chrome_trace("trace.json")
Using Profiler to Analyze Long-Running Jobs
Profiler offers an additional API to handle long-running jobs (such as training loops). Tracing all of the execution can be slow and result in very large trace files. To avoid this, use optional arguments:
schedule_option
: Scheduling options allow you to control when profiling is active. This is useful for long-running jobs to avoid collecting too much data. Available keys arewait
,warmup
,active
,repeat
andskip_first
. The profiler will skip the firstskip_first
steps, then wait forwait
steps, then do the warmup for the nextwarmup
steps, then do the active recording for the nextactive
steps and then repeat the cycle starting withwait
steps. The optional number of cycles is specified with therepeat
parameter, the zero value means that the cycles will continue until the profiling is finished.on_trace_ready
: specifies a function that takes a reference to the profiler as an input and is called by the profiler each time the new trace is ready.
To illustrate how the API works, consider the following example:
from torch.profiler import schedule
my_schedule = schedule(
skip_first=10,
wait=5,
warmup=1,
active=3,
repeat=2
)
def trace_handler(p):
output = p.key_averages().table(sort_by="self_cuda_time_total", row_limit=10)
print(output)
p.export_chrome_trace("/tmp/trace_" + str(p.step_num) + ".json")
with profile(
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
schedule=my_schedule,
on_trace_ready=trace_handler
) as p:
for idx in range(8):
model(inputs)
p.step()
FLOPS
Use formula to estimate the FLOPs (floating point operations) of specific operators (matrix multiplication and 2D convolution).
To measure floating-point operations (FLOPS):
with profile(
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
with_flops=True
) as prof:
model(inputs)
print(prof.key_averages().table(sort_by="flops", row_limit=10))
The resulting table output (omitting some columns):
------------------------------------------------------- ------------ ------------ ------------
Name Self CPU Self CUDA Total FLOPs
------------------------------------------------------- ------------ ------------ ------------
aten::conv2d 197.000us 0.000us 18135613440.000
aten::addmm 103.000us 17.000us 5120000.000
aten::mul 29.000us 2.000us 30.000
aten::convolution 409.000us 0.000us --
aten::_convolution 253.000us 0.000us --
aten::cudnn_convolution 5.465ms 2.970ms --
cudaEventRecord 138.000us 0.000us --
cudaStreamIsCapturing 43.000us 0.000us --
cudaStreamGetPriority 40.000us 0.000us --
cudaDeviceGetStreamPriorityRange 10.000us 0.000us --
------------------------------------------------------- ------------ ------------ ------------
Self CPU time total: 21.938ms
Self CUDA time total: 4.165ms
Conclusion and Further Information
PyTorch Profiler is a powerful tool for analyzing the performance of your models. By integrating it with 🤗 Accelerate, you can easily profile your models and gain insights into their performance, helping you to optimize and improve them.
For more detailed information, refer to the PyTorch Profiler documentation.
< > Update on GitHub