|
#!/bin/bash
|
|
|
|
|
|
REPO_URL="https://github.com/your-repo/mixture_of_agents.git"
|
|
PROJECT_DIR="mixture_of_agents"
|
|
PYTHON_VERSION="python3"
|
|
VENV_DIR="venv"
|
|
REQUIREMENTS_FILE="requirements.txt"
|
|
|
|
|
|
git clone $REPO_URL
|
|
cd $PROJECT_DIR
|
|
|
|
|
|
$PYTHON_VERSION -m venv $VENV_DIR
|
|
|
|
|
|
source $VENV_DIR/bin/activate
|
|
|
|
|
|
cat <<EOL > $REQUIREMENTS_FILE
|
|
flask
|
|
transformers
|
|
datasets
|
|
numpy
|
|
pandas
|
|
EOL
|
|
|
|
|
|
pip install -r $REQUIREMENTS_FILE
|
|
|
|
|
|
mkdir -p agents integration model dataset
|
|
|
|
|
|
cat <<EOL > agents/front_end_agent.py
|
|
class FrontEndAgent:
|
|
def __init__(self, model, tokenizer):
|
|
self.model = model
|
|
self.tokenizer = tokenizer
|
|
|
|
def process(self, task_data):
|
|
inputs = self.tokenizer(task_data['task'], return_tensors='pt')
|
|
outputs = self.model.generate(**inputs)
|
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
EOL
|
|
|
|
cat <<EOL > agents/back_end_agent.py
|
|
class BackEndAgent:
|
|
def __init__(self, model, tokenizer):
|
|
self.model = model
|
|
self.tokenizer = tokenizer
|
|
|
|
def process(self, task_data):
|
|
inputs = self.tokenizer(task_data['task'], return_tensors='pt')
|
|
outputs = self.model.generate(**inputs)
|
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
EOL
|
|
|
|
cat <<EOL > agents/database_agent.py
|
|
class DatabaseAgent:
|
|
def __init__(self, model, tokenizer):
|
|
self.model = model
|
|
self.tokenizer = tokenizer
|
|
|
|
def process(self, task_data):
|
|
inputs = self.tokenizer(task_data['task'], return_tensors='pt')
|
|
outputs = self.model.generate(**inputs)
|
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
EOL
|
|
|
|
cat <<EOL > agents/devops_agent.py
|
|
class DevOpsAgent:
|
|
def __init__(self, model, tokenizer):
|
|
self.model = model
|
|
self.tokenizer = tokenizer
|
|
|
|
def process(self, task_data):
|
|
inputs = self.tokenizer(task_data['task'], return_tensors='pt')
|
|
outputs = self.model.generate(**inputs)
|
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
EOL
|
|
|
|
cat <<EOL > agents/project_management_agent.py
|
|
class ProjectManagementAgent:
|
|
def __init__(self, model, tokenizer):
|
|
self.model = model
|
|
self.tokenizer = tokenizer
|
|
|
|
def process(self, task_data):
|
|
inputs = self.tokenizer(task_data['task'], return_tensors='pt')
|
|
outputs = self.model.generate(**inputs)
|
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
EOL
|
|
|
|
|
|
cat <<EOL > integration/integration_layer.py
|
|
class IntegrationLayer:
|
|
def __init__(self, front_end_agent, back_end_agent, database_agent, devops_agent, project_management_agent):
|
|
self.agents = {
|
|
'front_end': front_end_agent,
|
|
'back_end': back_end_agent,
|
|
'database': database_agent,
|
|
'devops': devops_agent,
|
|
'project_management': project_management_agent
|
|
}
|
|
|
|
def process_task(self, task_type, task_data):
|
|
if task_type in self.agents:
|
|
return self.agents[task_type].process(task_data)
|
|
else:
|
|
raise ValueError("Unknown task type")
|
|
EOL
|
|
|
|
|
|
cat <<EOL > model/load_pretrained_model.py
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
def load_model_and_tokenizer():
|
|
model_name = "gpt-3"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
return model, tokenizer
|
|
EOL
|
|
|
|
cat <<EOL > model/fine_tune_model.py
|
|
from datasets import load_dataset
|
|
from transformers import Trainer, TrainingArguments
|
|
|
|
def fine_tune_model(model, tokenizer, dataset_path):
|
|
dataset = load_dataset('json', data_files=dataset_path)
|
|
|
|
def preprocess_function(examples):
|
|
return tokenizer(examples['input'], truncation=True, padding=True)
|
|
|
|
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
|
|
|
training_args = TrainingArguments(
|
|
output_dir="./results",
|
|
evaluation_strategy="epoch",
|
|
learning_rate=2e-5,
|
|
per_device_train_batch_size=8,
|
|
per_device_eval_batch_size=8,
|
|
num_train_epochs=3,
|
|
weight_decay=0.01,
|
|
)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=tokenized_datasets['train'],
|
|
eval_dataset=tokenized_datasets['validation']
|
|
)
|
|
|
|
trainer.train()
|
|
EOL
|
|
|
|
|
|
cat <<EOL > dataset/code_finetune_dataset.json
|
|
[
|
|
{
|
|
"task": "front_end",
|
|
"input": "Create a responsive HTML layout with CSS",
|
|
"output": "<!DOCTYPE html><html><head><style>body {margin: 0; padding: 0;}</style></head><body><div class='container'></div></body></html>"
|
|
},
|
|
{
|
|
"task": "back_end",
|
|
"input": "Develop a REST API endpoint in Node.js",
|
|
"output": "const express = require('express'); const app = express(); app.get('/api', (req, res) => res.send('Hello World!')); app.listen(3000);"
|
|
}
|
|
]
|
|
EOL
|
|
|
|
|
|
cat <<EOL > app.py
|
|
from flask import Flask, request, jsonify
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
from agents.front_end_agent import FrontEndAgent
|
|
from agents.back_end_agent import BackEndAgent
|
|
from agents.database_agent import DatabaseAgent
|
|
from agents.devops_agent import DevOpsAgent
|
|
from agents.project_management_agent import ProjectManagementAgent
|
|
from integration.integration_layer import IntegrationLayer
|
|
|
|
app = Flask(__name__)
|
|
|
|
# Load the model and tokenizer
|
|
model_name = "gpt-3"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
# Initialize agents
|
|
front_end_agent = FrontEndAgent(model, tokenizer)
|
|
back_end_agent = BackEndAgent(model, tokenizer)
|
|
database_agent = DatabaseAgent(model, tokenizer)
|
|
devops_agent = DevOpsAgent(model, tokenizer)
|
|
project_management_agent = ProjectManagementAgent(model, tokenizer)
|
|
integration_layer = IntegrationLayer(front_end_agent, back_end_agent, database_agent, devops_agent, project_management_agent)
|
|
|
|
@app.route('/')
|
|
def home():
|
|
return "Welcome to the Mixture of Agents Model API!"
|
|
|
|
@app.route('/process', methods=['POST'])
|
|
def process_task():
|
|
data = request.json
|
|
task_type = data.get('task_type')
|
|
task_data = data.get('task_data')
|
|
|
|
if not task_type or not task_data:
|
|
return jsonify({"error": "task_type and task_data are required"}), 400
|
|
|
|
try:
|
|
result = integration_layer.process_task(task_type, task_data)
|
|
return jsonify({"result": result})
|
|
except ValueError as e:
|
|
return jsonify({"error": str(e)}), 400
|
|
|
|
if __name__ == '__main__':
|
|
app.run(debug=True)
|
|
EOL
|
|
|
|
|
|
echo -e "\nSetup complete. To run the application:\n"
|
|
echo "1. Activate the virtual environment:"
|
|
echo " source $VENV_DIR/bin/activate"
|
|
echo "2. Start the Flask application:"
|
|
echo " python app.py"
|
|
chmod +x setup.sh
|
|
./setup.sh
|
|
|