|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wnut_17 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
base_model: xlm-roberta-base |
|
model-index: |
|
- name: xlm-roberta-base-WNUT-ner |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Token Classification |
|
dataset: |
|
name: wnut_17 |
|
type: wnut_17 |
|
config: wnut_17 |
|
split: test |
|
args: wnut_17 |
|
metrics: |
|
- type: precision |
|
value: 0.6251511487303507 |
|
name: Precision |
|
- type: recall |
|
value: 0.47914735866543096 |
|
name: Recall |
|
- type: f1 |
|
value: 0.5424973767051418 |
|
name: F1 |
|
- type: accuracy |
|
value: 0.952295460374455 |
|
name: Accuracy |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-base-WNUT-ner |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the wnut_17 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3376 |
|
- Precision: 0.6252 |
|
- Recall: 0.4791 |
|
- F1: 0.5425 |
|
- Accuracy: 0.9523 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 213 | 0.2787 | 0.5650 | 0.3383 | 0.4232 | 0.9418 | |
|
| No log | 2.0 | 426 | 0.2535 | 0.6225 | 0.4004 | 0.4873 | 0.9485 | |
|
| 0.177 | 3.0 | 639 | 0.2773 | 0.6594 | 0.3911 | 0.4910 | 0.9497 | |
|
| 0.177 | 4.0 | 852 | 0.2651 | 0.6098 | 0.4708 | 0.5314 | 0.9526 | |
|
| 0.0551 | 5.0 | 1065 | 0.3076 | 0.6026 | 0.4652 | 0.5251 | 0.9514 | |
|
| 0.0551 | 6.0 | 1278 | 0.3031 | 0.6343 | 0.4662 | 0.5374 | 0.9531 | |
|
| 0.0551 | 7.0 | 1491 | 0.3319 | 0.6336 | 0.4680 | 0.5384 | 0.9523 | |
|
| 0.0276 | 8.0 | 1704 | 0.3430 | 0.6508 | 0.4560 | 0.5362 | 0.9526 | |
|
| 0.0276 | 9.0 | 1917 | 0.3342 | 0.6138 | 0.4773 | 0.5370 | 0.9521 | |
|
| 0.0157 | 10.0 | 2130 | 0.3376 | 0.6252 | 0.4791 | 0.5425 | 0.9523 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |
|
|